

 OpenAPI Generator

 v0.1.0

 Table of contents

 	Overview

 	Code of Conduct

 	Contributing

 	License

 	Guides

 	Configuration

 	Plugins

 	Client Author Guide

 	Modules

 	OpenAPI

 	OpenAPI.Call

 	OpenAPI.State

 	OpenAPI.Reader

 	OpenAPI.Reader.Config

 	OpenAPI.Reader.State

 	OpenAPI.Processor

 	OpenAPI.Processor.Format

 	OpenAPI.Processor.Ignore

 	OpenAPI.Processor.Naming

 	OpenAPI.Processor.Operation

 	OpenAPI.Processor.Operation.Param

 	OpenAPI.Processor.Schema

 	OpenAPI.Processor.Schema.Field

 	OpenAPI.Processor.State

 	OpenAPI.Processor.Type

 	OpenAPI.Renderer

 	OpenAPI.Renderer.File

 	OpenAPI.Renderer.Module

 	OpenAPI.Renderer.Operation

 	OpenAPI.Renderer.Schema

 	OpenAPI.Renderer.State

 	OpenAPI.Renderer.Util

 	OpenAPI.Spec

 	OpenAPI.Spec.Components

 	OpenAPI.Spec.ExternalDocumentation

 	OpenAPI.Spec.Info

 	OpenAPI.Spec.Info.Contact

 	OpenAPI.Spec.Info.License

 	OpenAPI.Spec.Link

 	OpenAPI.Spec.Path.Header

 	OpenAPI.Spec.Path.Item

 	OpenAPI.Spec.Path.Operation

 	OpenAPI.Spec.Path.Parameter

 	OpenAPI.Spec.RequestBody

 	OpenAPI.Spec.Response

 	OpenAPI.Spec.Schema

 	OpenAPI.Spec.Schema.Discriminator

 	OpenAPI.Spec.Schema.Encoding

 	OpenAPI.Spec.Schema.Example

 	OpenAPI.Spec.Schema.Media

 	OpenAPI.Spec.Schema.XML

 	OpenAPI.Spec.Server

 	OpenAPI.Spec.Server.Variable

 	OpenAPI.Spec.Tag

 	Mix Tasks

 	mix api.gen

OpenAPI Generator for Elixir

[image: Hex.pm]
[image: Documentation]
[image: Contributor Covenant]
A highly-configurable code generator that combines ergonomics with maintainability.

OpenAPI is a standard way to describe REST APIs on the web.
Anyone can create an OpenAPI description document that includes the available endpoints, expected request data, and possible responses.
For example, GitHub maintains a comprehensive OpenAPI description for their services.
Generating code from an OpenAPI description can be relatively easy — this project certainly isn't the first — but there's a catch: API descriptions often don't translate into ergonomic code.
Most users of an API client library don't want to think about the difference between a NullableRepository and Repository, as in the OpenAPI 3.0 GitHub API description.
(They have the same fields, but one has nullable: true.)
Users just want to get back a %Repository{} or nil.
The goal of this library is to create ergonomic client libraries from OpenAPI descriptions.
At the same time, the changes made to the code are easily repeatable (fully automated) for the sake of maintainability.
Think: the friendliness of your favorite hand-crafted client library applied to the scale of large APIs.
See an example client library here.

For more on how this is accomplished, see Configuration below and the configuration guide.
Installation
This library is available on Hex.pm.
Add the dependency in mix.exs:
def deps do
 [
 {:oapi_generator, "~> 0.1.0", only: :dev, runtime: false}
]
end
Then install the dependency using mix deps.get.
Most libraries only need access to the mix api.gen task in a development environment.
If your use case requires calling the generator in production or testing, be sure to modify or remove only: :dev and runtime: false as appropriate.
Configuration
The real power of this library is in the available configuration.
Although the options are conceptually simple, they add up to a better user experience.
This project uses configuration profiles to allow multiple configurations with the same package.
To get started, create a profile called default in your configuration:
config :oapi_generator, default: [
 output: [
 base_module: Example,
 location: "lib/example"
]
]
This is the minimum viable configuration for most client libraries.
It will create modules namespaced with Example. and save files in lib/example.
Some the options supported by the generator out-of-the-box include:
	Ignoring schemas and operations
	Renaming schemas
	Grouping schemas into module namespaces
	Merging schemas to create a struct with multiple typespecs
	Writing schemas and operation modules to different locations
	Introducing additional schema fields
	Adding custom use statements to generated modules
	Overriding function return types

For more information, see the configuration guide.
Plugins
If the available configuration isn't enough, client library authors can also reimplement portions of the code generator using plugins.
Most of the crucial parts of the processing and rendering of code are implemented as default callbacks for a behaviour.
These can be overridden for additional flexibility.
See the plugins guide for additional information.
Usage
Once the library is installed and configured, use mix api.gen with the name of the configuration profile and the OpenAPI description file(s):
mix api.gen default path/to/rest-api-description/spec.yaml

Further Reading
	Code of Conduct
	Contribution Guidelines
	License
	OpenAPI Specification

Sponsorship
If you like this library or it makes you money, please consider sponsoring.

Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or advances of
any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email address,
without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement
by email.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series of
actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the
community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by
Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

Contribution Guidelines

Hello there.
Thank you for your interest in contributing to this project.
With a wide variety of OpenAPI descriptions in the world, this project could use your assistance.
Reading and following the guidelines in this document is an act of kindness and respect for other contributors.
With your help, we can address issues, make changes, and work together efficiently.
Ways to Contribute
There are many ways to contribute to this project:
	Individuals with experience in Elixir can help us to address observed and potential issues.
	Users of REST APIs with OpenAPI descriptions can try the generator and report any issues or recommendations for improvement they encounter.
	Users of the package can help to test new use-cases and patterns. Documentation improves everyone's experience.
	Anyone can assist in the triage of bugs, identifying root causes, and proposing solutions.

Please keep in mind the intended scope of this package: to provide a code generator that balances an ergonomic user experience with maintainability.
Assume that the OpenAPI description that serves as input to this library will change often, and manually changing the output is impractical.
Ground Rules
All contributions to this project must align with the code of conduct.
Beyond that, we ask:
	Please be kind. Maintaining this project is not paid work.
	Please create an issue before embarking on major refactors or new features.
	Let's make reasonable effort to support as many OpenAPI descriptions as possible.

Security Issues
If you find a security-related issue with this project, please refrain from opening a public issue and instead email the maintainer.
Releases
For maintainers, the process of releasing this package to Hex.pm centers around git tags.
To make a new release:
	Update the Changelog with a new header that has today's date and the new version.
Include any missing notes from changes since the last release, and any additional upgrade instructions users may need.
	Update the @version number in mix.exs.
The form should be X.Y.Z, with optional suffixes, but no leading v.
	Update the Installation instructions in README.md to have the newest non-suffixed version number.
	Commit the above changes with a generic commit message, such as Release X.Y.Z.
	Tag the commit as X.Y.Z, with optional suffixes, but no leading v.
	Push the commits and tag (for example, git push origin main --tags).
	Observe the GitHub Action titled Release.
This action automatically publishes the package to Hex.pm.

License

MIT License

Copyright (c) 2022 AJ Foster

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Configuration

This project exists for its configuration capabilities.
Most API client libraries are either feature complete (due to code generation) or ergonomic (due to hand-crafting code), but not both.
With the right configuration — and a little bit of luck with the OpenAPI description — your client library can be both.
The following sections outline the configuration available for the default implementations of the various callbacks used by this library.
See the Plugins documentation for information about overriding the default behaviours with custom implementations.
Profiles
This library uses configuration profiles to allow for multiple sets of configuration at once.
In practice, this means that all configuration lives under a top-level key that will be referenced when running the generator.
For example:
config/config.exs

config :oapi_generator,
 my_profile: [
 output: [
 base_module: MyClientLibrary
]
]
To use this configuration, run mix api.gen my_profile path/to/description.json or call OpenAPI.run("my_profile", ["path/to/description/json"]).
Not sure what to name the profile? Start with default.

Operations
Operations are the actions you can take in an API: the HTTP requests that are possible.
This code generator takes an operation-first mindset when generating code.
For example, schemas that are defined in a description but not referenced in any API operation will not be output.
Following is an example operation module that has been annotated with the configuration options involved in various parts of the rendered output.
Example Module
Existence: `ignore`
Location: `output.location`, `output.operation_subdirectory`
Module name: `output.base_module`, `naming.default_operation_module`
defmodule Example.Operations do
 @moduledoc """
 Provides API endpoints related to repos
 """
 # `output.operation_use`, `output_schema_use` (if schemas are present)
 use Example.Helper

 # `output.default_client`
 @default_client Example.Client

 # Schemas would appear here, if present.

 @doc """
 Summary of the operation
 """
 # `output.base_module`, `output.types.error`
 @spec my_operation(String.t(), map, keyword) :: :ok | {:error, Example.Error.t()}
 def my_operation(path_param, body, opts \\ []) do
 client = opts[:client] || @default_client
 query = Keyword.take(opts, [:query_param])

 client.request(%{
 args: [path_param: path_param, body: body],
 call: {Example.Operations, :my_operation},
 url: "/path/to/#{path_param}",
 body: body,
 method: :post,
 query: query,
 request: [{"application/json", :map}],
 response: [{200, :map}, {404, {Example.NotFoundError, :t}}],
 opts: opts
 })
 end
end
Below are some of the highlights from the available configuration.
See the Option Reference section for an exhaustive list of the available options.
Processor: Naming
At the moment, configuration related to the naming and placement of operation functions is limited.
If you have ideas related to this, please share them in GitHub Discussions.
If an operation does not have any tags, and its operation ID does not contain any / characters, it will be placed in a default module named [BaseModule].Operations.
This module name can be controlled using the naming.default_operation_module configuration:
config :oapi_generator, default: [
 naming: [
 base_module: MyClientLibrary,
 default_operation_module: MyOperations
]
]
Learn more in the documentation for OpenAPI.Processor.Naming.operation_modules/2.
Processor: Ignore
The ignore option allows operations to be ignored based on their Operation IDs or paths in the API description.
Patterns can be exact strings or regular expressions.
Learn more in the documentation for OpenAPI.Processor.Ignore.
Renderer: Default Client
output.default_client defines the module that will be called in each operation function.
By allowing the client module to be defined at the time of code generation (with this option) and at runtime (with the client option passed to any operation call), this code generator maximizes flexibility.
For example, tests can supply a special test client module when they call client operations.
This need not be the end of the flexibility, however.
The GitHub client library defines a "stack" system within its client module, allowing users to easily swap libraries for handling HTTP requests and decoding JSON.
Renderer: Meta-programming
output.operation_use defines a module that should be included as a use [output.operation_use] statement at the top of every module that contains operations.
This can be useful for meta-programming, such as using compilation hooks to performed advanced modifications of the generated code.
Renderer: Types
output.types, and specifically its error key, allows library authors to override the return type of operation functions.
It's fairly common for client libraries to create their own error that acts as a superset for all of the errors defined in the OpenAPI description.
This provides a consistent interface for client library consumers.

Schemas
Much of the configuration of this code generator relates to the naming and output of schemas.
Remember that the library takes an operation-first mindset, and will not output schemas that are not actively used by an operation.
Following is an example operation module that has been annotated with the configuration options involved in various parts of the rendered output.
Example Schema
Existence: `ignore`
Location: `output.location`, `output.schema_subdirectory`
Module name: `output.base_module`
defmodule Example.MySchema do
 @moduledoc """
 Provides struct and types for a MySchema
 """
 # `output_schema_use`
 use Example.Helper

 @type t :: %__MODULE__{
 example: String.t()
 }

 defstruct [
 # output.extra_fields
 :__extra__,
 :example
]

 @doc false
 @spec __fields__(atom) :: keyword
 def __fields__(type \\ :t)

 def __fields__(:t) do
 [
 example: {:string, :generic}
]
 end
end
Below are some of the highlights from the available configuration.
See the Option Reference section for an exhaustive list of the available options.
Processor: Naming
Schemas can be renamed, grouped, and merged.
Applying variations of these options to the API description can turn generated code from confusing to ergonomic rather quickly.
Learn more in the documentation for OpenAPI.Processor.Naming.schema_module_and_type/2.
Processor: Ignore
The ignore option allows operations to be ignored based on their Operation IDs or paths in the API description.
Patterns can be exact strings or regular expressions.
Learn more in the documentation for OpenAPI.Processor.Ignore.
Renderer: Extra Fields
output.extra_fields allows authors to insert additional fields into every outputted schema.
For example, the GitHub library adds an __info__ map to each schema.
Like the __meta__ field provided by Ecto.Schema or the private field on Plug.Conn, this field can hold additional library-specific information without interfering with the API's own data.
Renderer: Meta-programming
output.schema_use allows authors to insert a use [output.schema_use] statement at the top of every module containing a schema.
A corresponding module must be supplied by the library with a __using__/1 macro.
Inside this macro, library authors can inject additional code that may be helpful.
For example:
defmodule MyLibrary.Schema do
 defmacro __using__(_opts) do
 quote do
 @derive {Jason.Encoder, except: [:__info__]}
 end
 end
end
Inside the macro, you can reference the name of the current module using __MODULE__, along with any other variables that are part of the macro environment.

Option Reference
Below are all of the configuration options offered by the default implementations of the processor and renderer.
They are expressed in terms of nested keyword lists.
For example, output.base_module represents the following:
config :oapi_generator, default: [
 output [
 base_module: ...
]
]
Remember that all configuration values must be contained within a profile.
	ignore: List of patterns (string or regular expression) representing operations or schemas to ignore during code generation.
Defaults to an empty list of patterns.
See OpenAPI.Processor.Ignore for more information.

	naming.default_operation_module: Module into which operation functions will be rendered if a module cannot be determined based on their operation ID or tags.
The configuration should not include the base module configured in output.base_module.
Defaults to Operations.
See OpenAPI.Processor.Naming.operation_modules/2 for more information.

	naming.group: List of module namespaces to use while naming operations and schemas.
Defaults to an empty list of modules.
See OpenAPI.Processor.Naming.group_schema/2 for more information.

	naming.merge: List of tuples containing patterns and replacements to use when merging schema modules.
Defaults to an empty list of merges.
See OpenAPI.Processor.Naming.merge_schema/2 for more information.

	naming.operation_use_tags: Whether to use tags when determining module names for operations.
Defaults to true.
See OpenAPI.Processor.Naming.operation_modules/2 for more information.

	naming.rename: List of tuples containing patterns and replacements to use when renaming modules.
Defaults to an empty list of replacements.
See OpenAPI.Processor.Naming.rename_schema/2 for more information.

	output.base_module: Base module of the generated code.
This is often the name of the library you intend to create, and it acts as a prefix for all rendered modules.
Defaults to nil, or no module prefix.
See OpenAPI.Renderer.Module.render/2 for more information.

	output.default_client: Default client to use in operation modules.
Every operation function calls a dynamic module to perform requests, and this configuration determines the default value.
Defaults to [output.base_module].Client.
See OpenAPI.Renderer.Module.render_default_client/2 for more information.

	output.extra_fields: Additional fields to add to all schema struct definitions and their typespecs, expressed as a keyword list of types.
This can be useful for private data the library wishes to add to all outputted data.
Defaults to an empty list of fields.
See OpenAPI.Renderer.Schema for more information.

	output.location: Base filesystem location for all rendered files.
This is often a directory like lib to follow Elixir conventions.
Defaults to the current working directory.
See OpenAPI.Renderer.Module.filename/2 for more information.

	output.operation_call.request: Format of the request key in the body of an operation function.
By default, the possible request body schemas are formatted as a :list of tuples with the content type and the schema.
A value of :map will cause a map to be output instead.
See OpenAPI.Renderer.Operation.render_function/2 for more information.

	output.operation_subdirectory: Subdirectory to use for all rendered files containing operations.
This is an optional way to colocate generated operation modules in a single directory away from other parts of the client library.
Defaults to the same location as output.location.
See OpenAPI.Renderer.Module.filename/2 for more information.

	output.operation_use: Module to include as a use statement at the top of every module containing operations.
Defaults to no used module.
See OpenAPI.Renderer.Module.render_using/2 for more information.

	output.schema_subdirectory: Subdirectory to use for all rendered files containing only schemas.
This is an optional way to colocate generated schema modules in a single directory away from other parts of the client library.
Defaults to the same location as output.location.
See OpenAPI.Renderer.Module.filename/2 for more information.

	output.schema_use: Module to include as a use statement at the top of every module containing only schemas.
Defaults to no used module.
See OpenAPI.Renderer.Module.render_using/2 for more information.

	output.types.error: Type to override the error return type of all operation functions.
This is useful when the client intends to normalize errors from the API.
By default, the error type is a union of all possible error responses for the operation.
See OpenAPI.Renderer.Operation.render_spec/2 for more information.

	reader.additional_files: List of paths to supplemental root files of an API description.
Defaults to an empty list.
See OpenAPI.Reader for more information.

	reader.file: Path to the root file of an API description.
This option is often supplied to the mix api.gen mix task instead.
See OpenAPI.Reader for more information.

Plugins

Sometimes, the configuration available using the default implementation of this library isn't enough.
For advanced use-cases, library authors have the option to override the default implementations and create their own workflows.
This guide provides more details and a brief example of such an integration.
First, however, it is important to understand how the library is divided up:
Phases
There are three overall phases involved in code generation:
	Read the API description, dereference it, and create a large in-memory data structure representing the specification.
This phase begins with one or more filenames (JSON or YAML) to read and ends with an Elixir representation of each document.
	Process the description, converting the data into structures that are more useful for code generation.
This phase begins with the dereferenced API description and ends with a modified set of structs that represent the files to be written.
	Render the code using an AST-based renderer.
This phase begins with the final state of the API description and ends with formatted Elixir code written to the filesystem.

Through all three phases, the library uses an OpenAPI.State struct to keep track of changes.
Each phase also implements its own "state" struct, with intermediate data useful for that phase.
Behaviours
Both the process and render phases define a behaviour with optional callbacks.
By default, the following modules are used for each phase:
config :oapi_generator,
 my_profile: [
 processor: OpenAPI.Processor,
 renderer: OpenAPI.Renderer
]
Client library authors may configure their own module in place of the default implementation.
For example, a custom renderer may start like this:
config/config.exs

config :oapi_generator,
 my_profile: [
 renderer: MyLibrary.Renderer
]
lib/my_library/renderer.ex

defmodule MyLibrary.Renderer do
 use OpenAPI.Renderer
end
With use OpenAPI.Renderer (or similarly with use OpenAPI.Processor), default implementations of all behaviour callbacks are provided automatically.
This allows authors to override only those callbacks they are interested in.
lib/my_library/renderer.ex

defmodule MyLibrary.Renderer do
 use OpenAPI.Renderer

 # Override the default write/2 callback
 # with an alternative implementation.
 def write(state, file) do
 # ...
 end
end
The full list of callbacks can be found in the Callbacks section below and in the documentation for OpenAPI.Processor and OpenAPI.Renderer.
Configuration
Since custom plugins are implemented in each client applications, authors can choose to configure them in whatever manner suits the client application best.
It is recommended that the method of configuration maximize the repeatability of the code generation for easier contributions.
Default implementations of each callback generally use the application environment for configuration.
Because of this, if library authors use the same configuration profiles setup as the default implementations, it is recommended that each custom plugin choose a unique configuration key within the profile that does not conflict with other callbacks.
Callbacks
Below is a list of all available callbacks in order of their use, along with their default implementations:
Processor: OpenAPI.Processor
	For each operation	OpenAPI.Processor.ignore_operation?/2: OpenAPI.Processor.Ignore.ignore_operation?/2
	OpenAPI.Processor.operation_docstring/3: OpenAPI.Processor.Operation.docstring/3
	OpenAPI.Processor.operation_request_method/2: OpenAPI.Processor.Operation.request_method/2
	OpenAPI.Processor.operation_module_names/2: OpenAPI.Processor.Naming.operation_modules/2
	For each operation module name	OpenAPI.Processor.operation_function_name/2: OpenAPI.Processor.Naming.operation_function/2
	OpenAPI.Processor.operation_request_body/2: OpenAPI.Processor.Operation.request_body/2
	OpenAPI.Processor.operation_response_body/2: OpenAPI.Processor.Operation.response_body/2

	For each schema	OpenAPI.Processor.ignore_schema?/2: OpenAPI.Processor.Ignore.ignore_schema?/2
	OpenAPI.Processor.schema_format/2: OpenAPI.Processor.Format.schema_format/2
	OpenAPI.Processor.schema_module_and_type/2: OpenAPI.Processor.Naming.schema_module_and_type/2

Renderer: OpenAPI.Renderer
	For each file (identified by module name)	OpenAPI.Renderer.render/2: OpenAPI.Renderer.Module.render/2	OpenAPI.Renderer.render_moduledoc/2: OpenAPI.Renderer.Module.render_moduledoc/2
	OpenAPI.Renderer.render_using/2: OpenAPI.Renderer.Module.render_using/2
	OpenAPI.Renderer.render_default_client/2: OpenAPI.Renderer.Module.render_default_client/2
	OpenAPI.Renderer.render_schema/2: OpenAPI.Renderer.Schema.render/2	OpenAPI.Renderer.render_schema_types/2: OpenAPI.Renderer.Schema.render_types/2
	OpenAPI.Renderer.render_schema_struct/2: OpenAPI.Renderer.Schema.render_struct/2
	OpenAPI.Renderer.render_schema_field_function/2: OpenAPI.Renderer.Schema.render_field_function/2

	OpenAPI.Renderer.render_operations/2: OpenAPI.Renderer.Operation.render_all/2
	For each operation in the file	OpenAPI.Renderer.render_operation/2: OpenAPI.Renderer.Operation.render/2
	OpenAPI.Renderer.render_operation_doc/2: OpenAPI.Renderer.Operation.render_doc/2
	OpenAPI.Renderer.render_operation_spec/2: OpenAPI.Renderer.Operation.render_spec/2
	OpenAPI.Renderer.render_operation_function/2: OpenAPI.Renderer.Operation.render_function/2

	OpenAPI.Renderer.format/2: OpenAPI.Renderer.Util.format/2
	OpenAPI.Renderer.location/2: OpenAPI.Renderer.Module.filename/2
	OpenAPI.Renderer.write/2: OpenAPI.Renderer.Util.write/2

Each callback represents an opportunity for client library authors to inject their own logic into the code generator.
If popular overrides are discovered, they may be added to the default implementation as well.

Client Author Guide

Unlike most packages on Hex.pm, the target audience for this project is other library authors, and not necessarily end-users.
While it is certainly possible for application developers to generate code directly in their Elixir apps, it's likely that most OpenAPI specifications will be consumed by a generic client library (like oapi_github) instead.
As the author of a library with code generated from an OpenAPI description, it's important to establish a healthy relationship between your library and the spec.
For example, if your library is based on a specification that is updated often, you likely want to set a reasonable cadence (ex. monthly) for updating the generated code.
Otherwise, maintenance can become a burden very quickly.
Following are some recommendations for how to establish this relationship.
Cadence
As mentioned above, some OpenAPI descriptions are updated often.
Before introducing API versioning, GitHub continuously updated its OpenAPI spec with both new endpoints and corrections for existing ones.
A library author could potentially release new versions every week in an attempt to keep up.
However, it's unlikely that real-time updates of the generated code is necessary.
Here are a few options for releasing updates to the generated code:
	If the description updates often with new endpoints that consumers of your library are eager to use, a rapid or as-needed release cadence may be appropriate.
This might mean creating a scheduled CI job that regularly re-generates the code based on the latest copy of the specification and opens a pull request with the changes.
Or, it might mean encouraging users of the library to open an issue or pull request when they encounter an unsupported endpoint.

	If the description updates often with fixes to the specification, then a periodic release cadence may be appropriate.
This would help users of the library avoid issues while also reducing the maintenance burden.

	If the description has well-versioned or occasional updates, the client may wish to "follow" the release cadence of the specification.
In this case, the version of the description may play a central role in the client, and should likely be included as an .api-version file in the release.
This makes it clear to users of the library what API version they can expect.

Contributions
Some libraries will be best served by an as-needed update cadence.
In this case, simple guidelines around the contribution of generated code can make a big difference.
Here is an excerpt from the contribution guidelines for the GitHub client library that uses this generator:
Updating the Generated Code
If you intend to open a PR with updates to the generated code based on the latest GitHub OpenAPI description, please read carefully:
	Please use the latest commit from the official repository at the time of your contribution.
	Please use descriptions-next/api.github.com/api.github.com.yaml — not descriptions or a GitHub Enterprise release.
	Use mix api.gen default path/to/descriptions-next/api.github.com/api.github.com.yaml to regenerate the code.
	Please also change the .api-version file if appropriate.
	Please include the commit SHA of the official repository in the description of your pull request.
	Please do not make any other changes in the same PR (for example, changing this library's version).

If you run into any unexpected issues while generating the code, please open an issue.
Thank you for your help!

Although not all contributors will read this guidance, steps like this can make it much easier for you as a library author to simply merge the pull request and release a new version.
Supplemental Specs
Despite best efforts, OpenAPI descriptions often don't cover all of the API endpoints available.
For example, although GitHub provides a nearly-comprehensive specification of hundreds of endpoints, there are ID-based endpoints like /repositories/{id} that are not publicly documented.
A library author may know this a priori and wish to include these endpoints in the generated code.
For this case, it is recommended that the author maintain a separate, supplemental OpenAPI description document with just enough information to generate the additional code.
This (presumably small) supplemental description can be committed along with the client code while the official description remains separate.

OpenAPI

Code generator for OpenAPI REST API descriptions
Note
It is not expected that clients will call functions in this module directly. Instead, consider
using the mix api.gen task.

This module provides a single function, run/2, that accepts the name of a configuration
profile and a list of files containing JSON or Yaml OpenAPI descriptions. It runs the three
phases of code generation:
	OpenAPI.Reader
	OpenAPI.Processor
	OpenAPI.Renderer

At the end, an OpenAPI.State struct is returned with all of the data that was used to
generate the client code.
For more information, see the readme or the available guides on
configuration, plugins, or
creating a client library.

 Anchor for this section

 Summary

 Functions

 run(profile, files)

 Using the given configuration profile, read the OpenAPI description contained in files and
generate client code

 Anchor for this section

Functions

 Link to this function

 run(profile, files)

 View Source

 @spec run(String.t(), [String.t()]) :: term()

Using the given configuration profile, read the OpenAPI description contained in files and
generate client code

OpenAPI.Call

Information about the original invocation of the code generator
Note
It is not expected that clients will interact with this module directly.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Call{files: [String.t()], profile: atom()}

OpenAPI.State

State for the overall code generation
This struct contains data that is passed between phases of the generation. It includes the
following fields:
	call: Information about the original call to the generator, including the configuration
profile and the spec files passed.
	files: After the render phase, contains a list of OpenAPI.Renderer.File.t/0 structs
that were written.
	operations: After the process phase, contains a list of OpenAPI.Processor.Operation.t/0
structs that were processed.
	schemas: After the process phase, contains a map of schema references to their
OpenAPI.Processor.Schema.t/0 structs. The reference-keyed map is included to make it
easier for render callbacks to look up a schema by its reference, as this is often how
operations will refer to them.
	schema_specs_by_path: After the read phase, contains a map of all schema specs keyed on
their base file and last referenced paths. This allows for easy lookup of schema specs from
OpenAPI.Spec.ref/0 references.
	spec: After the read phase, contains the parsed and merged OpenAPI description(s).

All of this state is managed by the code generator between phases, and it is unlikely that a
callback would need to read or write to this struct directly.

 Anchor for this section

 Summary

 Types

 t()

 OpenAPI generator state

 yaml()

 Raw Yaml input.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.State{
 call: OpenAPI.Call.t(),
 files: [OpenAPI.Renderer.File.t()],
 operations: [OpenAPI.Processor.Operation.t()],
 schema_specs_by_path: %{
 required(OpenAPI.Spec.full_path()) => OpenAPI.Spec.Schema.t()
 },
 schemas: %{required(reference()) => OpenAPI.Processor.Schema.t()},
 spec: OpenAPI.Spec.t() | nil
}

OpenAPI generator state

 Link to this type

 yaml()

 View Source

 @type yaml() :: map() | list()

Raw Yaml input.

OpenAPI.Reader

Phase one of code generation
The read phase begins with one or more filenames (JSON or YAML) to read. Each document
should be the root of an OpenAPI description (usually beginning with an openapi key and
version number). As the first step, they are parsed into large, nested maps and stored in the
state based on their filename. Then, each document is parsed into structs based on the OpenAPI
document definition.
Note that this library is not meant to "validate" OpenAPI descriptions. Errors may be thrown
only when there are details missing that affect the operation of the code generator. Because of
this, you may be able to "get away with" generating code from an incomplete or invalid document.
Note
Functions in this module are used by the main OpenAPI module. It is unlikely that you will
call these functions directly, unless you are reimplementing one of the core functions. If
this happens, please share your use-case with the maintainers; a plugin might be warranted.

Configuration
All configuration for this phase lives under the reader key in each profile:
config :oapi_generator,
 default: [
 reader: [
 ...
]
]
The following options are available:
	additional_files: List of paths to supplemental root files of an API description. See
Supplemental Descriptions below for more information. Defaults to no additional files.

	file: Path to the (likely vendor-supplied) root file of an API description. This
information is often supplied to the mix api.gen task, since individual client library
maintainers may keep the API description document in different locations. However, if the
API description is included in the client library repository, then this configuration can be
used instead. If unset, the filename must be supplied to mix api.gen.

Supplemental Descriptions
Sometimes, the OpenAPI description provided by a vendor is incomplete. Client library authors
may choose to write supplemental descriptions that "fill in the gaps". Although these files
must contain the root of an OpenAPI description (including an openapi key and version number)
they may reference parts of the vendor-provided specification.
For example, GitHub provides special ID-based API routes like /repositories/{id} that are
not documented in its OpenAPI description. A client library author may create a supplemental
description that looks like this (abbreviated):
openapi: 3.1.0
paths:
 "/repositories/{id}":
 get:
 summary: Get a repository by ID
 operationId: repos/get-by-id
 parameters:
 - "$ref": "#/components/parameters/id"
 responses:
 '200':
 description: Response
 content:
 application/json:
 schema:
 "$ref": "#/components/schemas/full-repository"
Note that references to schemas contained in the vendor-supplied description must be modified
to use accurate paths. Assuming the supplemental file is committed in the client library
repository, authors may use the additional_files configuration to ensure it is always
processed along with the vendor-supplied description:
config :oapi_generator,
 default: [
 reader: [
 additional_files: ["path/to/supplement.yaml"]
]
]
During the reading phase, the two root documents will be combined as if each root key were
concatenated (for example, the paths from one file were copied to the other). Keys like info
will always use the vendor-supplied data. After the reading phase, the documents will be treated
as one API description, although plugins will have the opportunity to see the source of the data
when necessary.

 Anchor for this section

 Summary

 Functions

 ensure_file(state, file)

 run(state)

 Run the reading phase of the code generator

 Anchor for this section

Functions

 Link to this function

 ensure_file(state, file)

 View Source

 @spec ensure_file(map(), String.t()) :: map()

 Link to this function

 run(state)

 View Source

 @spec run(OpenAPI.State.t()) :: OpenAPI.State.t()

Run the reading phase of the code generator

OpenAPI.Reader.Config

Configuration for the read phase
For more information, see the Configuration section of the documentation for
OpenAPI.Reader.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Reader.Config{
 additional_files: [String.t()],
 file: String.t() | nil,
 passed_files: [String.t()]
}

OpenAPI.Reader.State

State of the reader phase of code generation
This struct is created at the beginning of the read phase using data from the overall
OpenAPI.State. It is fully managed by the read phase, and it is unlikely that client libraries
would read or write to this struct.

 Anchor for this section

 Summary

 Types

 decoder()

 Decode function for raw Yaml

 decoder(t)

 Decode function for raw Yaml

 t()

 OpenAPI reader state

 yaml()

 Raw Yaml input

 Anchor for this section

Types

 Link to this type

 decoder()

 View Source

 @type decoder() :: decoder(term())

Decode function for raw Yaml

 Link to this type

 decoder(t)

 View Source

 @type decoder(t) :: (t, yaml() -> {map(), t})

Decode function for raw Yaml

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Reader.State{
 base_file: String.t() | nil,
 base_file_path: [OpenAPI.Spec.path_segment()],
 config: OpenAPI.Reader.Config.t(),
 current_file: String.t() | nil,
 current_file_path: [OpenAPI.Spec.path_segment()],
 files: %{optional(String.t()) => yaml() | nil},
 last_ref_file: String.t() | nil,
 last_ref_path: [OpenAPI.Spec.path_segment()],
 path_parameters: [OpenAPI.Spec.Path.Parameter.t()],
 refs: %{optional(String.t()) => map()},
 schema_specs_by_path: %{
 required(OpenAPI.Spec.full_path()) => OpenAPI.Spec.Schema.t()
 },
 spec: OpenAPI.Spec.t() | nil
}

OpenAPI reader state

 Link to this type

 yaml()

 View Source

 @type yaml() :: map() | list()

Raw Yaml input

OpenAPI.Processor behaviour

Phase two of code generation
The process phase begins with a decoded API description from the read phase. It may
represent the contents of one or more files, including one or more root descriptions if
supplemental files were used.
This library takes an "operation first" mindset when processing the description. Schemas are
ignored until they are referenced by an operation (ex. as a response body). It is the job of
this phase to observe all of the operations and their referenced schemas, process them into
data structures more relevant to code generation, and prepare the data for rendering.
Customization
At several points during code generation, it may be useful to customize the behaviour of the
processor. For this purpose, this module is a Behaviour with most of its critical logic
implemented as optional callbacks.

 Anchor for this section

 Summary

 Callbacks

 ignore_operation?(state, operation_spec)

 Whether to render the given operation in the generated code

 ignore_schema?(state, schema_spec)

 Whether to render the given schema in the generated code

 operation_docstring(state, operation_spec, query_params)

 Construct a docstring for the given operation

 operation_function_name(state, operation_spec)

 Choose the name of the client function for the given operation

 operation_module_names(state, operation_spec)

 Choose the names of the client function modules for the given operation

 operation_request_body(state, operation_spec)

 Collect a list of request content types and their associated schemas

 operation_request_method(state, operation_spec)

 Choose and cast the request method for the given operation

 operation_response_body(state, operation_spec)

 Collect a list of response status codes and their associated schemas

 schema_format(state, schema)

 Choose the output format for the given schema

 schema_module_and_type(state, schema)

 Choose the name of the module and type for the given schema

 Functions

 run(state)

 Run the processing phase of the code generator

 Anchor for this section

Callbacks

 Link to this callback

 ignore_operation?(state, operation_spec)

 View Source

 (optional)

 @callback ignore_operation?(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t()
) :: boolean()

Whether to render the given operation in the generated code
If this function returns true, the operation will not appear in the generated code.
See OpenAPI.Processor.Ignore.ignore_operation?/2 for the default implementation.

 Link to this callback

 ignore_schema?(state, schema_spec)

 View Source

 (optional)

 @callback ignore_schema?(
 state :: OpenAPI.Processor.State.t(),
 schema_spec :: OpenAPI.Spec.Schema.t()
) ::
 boolean()

Whether to render the given schema in the generated code
If this function returns true, the schema will not appear in the generated code (unless it
returns false when presented in another context) and a plain map will be used as its type.
See OpenAPI.Processor.Ignore.ignore_schema?/2 for the default implementation.

 Link to this callback

 operation_docstring(state, operation_spec, query_params)

 View Source

 (optional)

 @callback operation_docstring(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t(),
 query_params :: [OpenAPI.Processor.Operation.Param.t()]
) :: String.t()

Construct a docstring for the given operation
This function accepts the operation spec as well as a list of the processed query params
associated with the operation.
See OpenAPI.Processor.Operation.docstring/3 for the default implementation.

 Link to this callback

 operation_function_name(state, operation_spec)

 View Source

 (optional)

 @callback operation_function_name(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t()
) :: atom()

Choose the name of the client function for the given operation
This function accepts the operation spec and chooses a name for the client function that will
be generated. The name must be unique within its module (see operation_module_names/2).
See OpenAPI.Processor.Naming.operation_function/2 for the default implementation.

 Link to this callback

 operation_module_names(state, operation_spec)

 View Source

 (optional)

 @callback operation_module_names(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t()
) :: [module()]

Choose the names of the client function modules for the given operation
Each operation may have multiple client functions in different modules. This function accepts
the operation spec and returns a list of all of its operation modules.
See OpenAPI.Processor.Naming.operation_modules/2 for the default implementation.

 Link to this callback

 operation_request_body(state, operation_spec)

 View Source

 (optional)

 @callback operation_request_body(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t()
) :: OpenAPI.Processor.Operation.request_body_unprocessed()

Collect a list of request content types and their associated schemas
This function accepts the operation spec and returns a list of tuples containing the content
type (ex. "application/json") and the schema associated with that type.
See OpenAPI.Processor.Operation.request_body/2 for the default implementation.

 Link to this callback

 operation_request_method(state, operation_spec)

 View Source

 (optional)

 @callback operation_request_method(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t()
) :: OpenAPI.Processor.Operation.method()

Choose and cast the request method for the given operation
This function accepts the operation spec and must return the (lowercase) atom representing the
HTTP method.
See OpenAPI.Processor.Operation.request_method/2 for the default implementation.

 Link to this callback

 operation_response_body(state, operation_spec)

 View Source

 (optional)

 @callback operation_response_body(
 state :: OpenAPI.Processor.State.t(),
 operation_spec :: OpenAPI.Spec.Path.Operation.t()
) :: OpenAPI.Processor.Operation.response_body_unprocessed()

Collect a list of response status codes and their associated schemas
This function accepts the operation spec and returns a list of tuples containing the status
codes (ex. 200 or :default) and a list of tuples with the possible content types and the
schema associated with that code and type.
See OpenAPI.Processor.Operation.response_body/2 for the default implementation.

 Link to this callback

 schema_format(state, schema)

 View Source

 (optional)

 @callback schema_format(
 state :: OpenAPI.Processor.State.t(),
 schema :: OpenAPI.Processor.Schema.t()
) ::
 OpenAPI.Processor.Format.format() | :unknown

Choose the output format for the given schema
Schemas can be output in a number of different ways, the most common of which are structs and
typed maps. This callback chooses which output format to use for a processed schema. This
decision may influence the naming (module and type) given to the schema.
The special value :unknown may be returned from this callback to delay / re-enqueue the
schema for processing. This may appropriate, for example, if the schema's parent has not yet
been processed. Note that continually returning :unknown can cause an infinite loop.
See OpenAPI.Processor.Format.schema_format/2 for the default implementation.

 Link to this callback

 schema_module_and_type(state, schema)

 View Source

 (optional)

 @callback schema_module_and_type(
 state :: OpenAPI.Processor.State.t(),
 schema :: OpenAPI.Processor.Schema.t()
) :: {module(), atom()}

Choose the name of the module and type for the given schema
Each module may contain multiple schemas with distinct types. By convention, the default
type (used for single-schema modules) is :t, as in MySchema.t(). Additional schemas in the
same module may represent variations on the default type, such as a User.public() schema
containing a reduced set of fields from User.t().
See OpenAPI.Processor.Naming.schema_module_and_type/2 for the default implementation.

 Anchor for this section

Functions

 Link to this function

 run(state)

 View Source

 @spec run(OpenAPI.State.t()) :: OpenAPI.State.t()

Run the processing phase of the code generator
This functions is used by the main OpenAPI module. It is unlikely that you will call this
function directly, unless you are reimplementing one of the core functions. If this happens,
please share your use-case with the maintainers; a plugin might be warranted.

OpenAPI.Processor.Format

Default implementation for format-related callbacks
This module contains the default implementations for:
	OpenAPI.Processor.schema_format/2

Configuration
This implementation does not currently use any configuration.

 Anchor for this section

 Summary

 Types

 format()

 Functions

 schema_format(state, schema)

 Anchor for this section

Types

 Link to this type

 format()

 View Source

 @type format() :: :struct | :typed_map | :map

 Anchor for this section

Functions

 Link to this function

 schema_format(state, schema)

 View Source

 @spec schema_format(OpenAPI.Processor.State.t(), OpenAPI.Processor.Schema.t()) ::
 format() | :unknown

OpenAPI.Processor.Ignore

Ignore operations and schemas from the description
This module contains the default implementations for:
	OpenAPI.Processor.ignore_operation?/2
	OpenAPI.Processor.ignore_schema?/2

Configuration
All configuration for the functions in this module is contained in a key ignore of the active
configuration profile. For example:
config/config.exs

config :oapi_generator, default: [
 ignore: [
 "IgnoredOperation",
 ~r"/components/schemas/ignored-"
]
]
Each element of the ignored list is a pattern. Patterns are compared against the operation IDs
and paths of an operation, and the paths and titles of a schema. If a string is given, it is
compared for equality. Regular expressions are tested using Regex.match?/2.
If any pattern matches the tested operation or schema, it will be excluded.

 Anchor for this section

 Summary

 Types

 definition()

 Definition of a module to ignore

 Default Implementations

 ignore_operation?(state, operation)

 Ignore operations based on configured patterns of IDs and paths

 ignore_schema?(state, schema)

 Ignore schemas based on configured patterns of paths and titles

 Anchor for this section

Types

 Link to this type

 definition()

 View Source

 @type definition() :: String.t() | Regex.t()

Definition of a module to ignore

 Anchor for this section

Default Implementations

 Link to this function

 ignore_operation?(state, operation)

 View Source

 @spec ignore_operation?(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t()) ::
 boolean()

Ignore operations based on configured patterns of IDs and paths
Default implementation of OpenAPI.Processor.ignore_operation?/2.
In this implementation, patterns from the ignore configuration key are compared against each
operation ID and path. If a string pattern matches exactly, or regular expression pattern
matches according to Regex.match?/2, the operation will be ignored.

 Link to this function

 ignore_schema?(state, schema)

 View Source

 @spec ignore_schema?(OpenAPI.Processor.State.t(), OpenAPI.Spec.Schema.t()) ::
 boolean()

Ignore schemas based on configured patterns of paths and titles
Default implementation of OpenAPI.Processor.ignore_schema?/2.
In this implementation, patterns from the ignore configuration key are compared against each
schema title and path. If a string pattern matches exactly, or regular expression pattern
matches according to Regex.match?/2, the schema will be ignored. This often means the type
will be replaced by a plain map.

OpenAPI.Processor.Naming

Default implementation for naming-related callbacks
This module contains the default implementations for:
	OpenAPI.Processor.operation_function_name/2
	OpenAPI.Processor.operation_module_names/2
	OpenAPI.Processor.schema_module_and_type/2

It also includes several helper functions that are used by the default implementations. Library
authors implementing their own naming-related callbacks may find these helpful.
Configuration
All configuration offered by the functions in this module lives under the naming key of the
active configuration profile. For example (default values shown):
config/config.exs

config :oapi_generator, default: [
 naming: [
 default_operation_module: Operations,
 group: [],
 merge: [],
 rename: []
]
]

 Anchor for this section

 Summary

 Types

 module_and_type()

 raw_module_and_type()

 Default Implementations

 operation_function(state, operation_spec)

 Choose the name of an operation client function based on its operation ID

 operation_modules(state, operation_spec)

 Choose the names of modules containing the given operation

 schema_module_and_type(state, schema)

 Choose the name of the schema's module and type

 Functions

 group_schema(raw_module_and_type, state)

 Group schema modules into configured namespaces

 merge_schema(raw_module_and_type, state)

 Merge schemas based on configured pairs of patterns and replacements

 normalize_identifier(input, casing \\ :snake)

 Normalize an identifier into CamelCase or snake_case

 raw_schema_module_and_type(state, schema, schema_spec)

 Choose a starting schema module and type name based on title and context

 readable_content_type(content_type)

 Turn a content type (ex. "application/json") into a readable type (ex. "json")

 rename_schema(raw_module_and_type, state)

 Rename schema modules based on configured patterns

 Anchor for this section

Types

 Link to this type

 module_and_type()

 View Source

 @type module_and_type() :: {module :: module(), type :: atom()}

 Link to this type

 raw_module_and_type()

 View Source

 @type raw_module_and_type() :: {module :: String.t() | nil, type :: String.t()}

 Anchor for this section

Default Implementations

 Link to this function

 operation_function(state, operation_spec)

 View Source

 @spec operation_function(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t()) ::
 atom()

Choose the name of an operation client function based on its operation ID
Default implementation of OpenAPI.Processor.operation_function_name/2.
In this implementation, the operation ID is split up by slash characters with only the last
portion taken (ex. "repos/get" becomes "get"), assuming that the module name will use the
remaining portions. Then the value is normalized to be atom-friendly.
Note that this function creates new atoms, and should not be run in a production environment.

 Link to this function

 operation_modules(state, operation_spec)

 View Source

 @spec operation_modules(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t()) ::
 [module()]

Choose the names of modules containing the given operation
Default implementation of OpenAPI.Processor.operation_module_names/2.
This generator generates a set of modules with functions in them according to some
normalization rules:
	Operation tags and IDs are normalized for spaces, slashes, etc.
	Operation tags are used to generate modules that group operation functions (unless
naming.operation_use_tags is false)
	Operation IDs with slashes will be split, with the initial segments (everything except the
last segment) used as segments of a module

Examples:
	Operation foo with tag bar => Bar.foo
	Operation foo/bar with tag baz => Foo.bar and Baz.bar
	Operation foo/bar without tags => Foo.bar

Each operation may exist in multiple modules depending on the quantity of tags and the format
of the operation ID. If the operation does not have slashes in its ID and does not have any
tags, then the configured :default_operation_module or [output.base_module].Operations
becomes the module by default.

 configuration

 Configuration

Use naming.default_operation_module to configure the catch-all module name. Note that the
configured name should not include the base module, if it is set in output.base_module. The
following configuration would result in a module named MyClientLibrary.Operations:
config :oapi_generator, default: [
 naming: [
 default_operation_module: Operations,
 operation_use_tags: true
],
 output: [
 base_module: MyClientLibrary
]
]
Set naming.operation_use_tags to false to disable the use of tags when creating modules.

 Link to this function

 schema_module_and_type(state, schema)

 View Source

 @spec schema_module_and_type(
 OpenAPI.Processor.State.t(),
 OpenAPI.Processor.Schema.t()
) ::
 {module() | nil, atom()}

Choose the name of the schema's module and type
Default implementation of OpenAPI.Processor.schema_module_and_type/2.
Most of the configuration of this project relates to the manipulation of schema names. It is
important to understand the order of operations. As an example, imagine an OpenAPI description
has the following schemas:
	#/components/schemas/simple-user
	#/components/schemas/user
	#/components/schemas/user-preferences

And the following configuration:
config :oapi_generator, default: [
 naming: [
 group: [User],
 merge: [{"SimpleUser", "User"}]
 rename: [{~r/Preferences/, "Settings"}]
],
 output: [
 base_module: Example
]
]
In this case, naming would proceed as follows:
	Schemas in the OpenAPI descriptions are turned into Elixir modules based on their location,
context, or title by raw_schema_module_and_type/1:
#/components/schemas/simple-user => SimpleUser.t()
#/components/schemas/user => User.t()
#/components/schemas/user-preferences => UserPreferences.t()

	Merge settings are applied based on the original names of the schemas by merge_schema/2:
SimpleUser.t() => User.simple()

	Rename settings are applied based on the merged module names by rename_schema/2:
UserPreferences.t() => UserSettings.t()

	Group settings are applied based on the renamed module names by group_schema/2:
UserSettings.t() => User.Settings.t()

	The base module is applied to get the final names:
User.simple() => Example.User.simple()
User.t() => Example.User.t()
User.Settings.t() => Example.User.Settings.t()

 collapsing

 Collapsing

Note that User.simple() and User.t() will end up in the same file as a result of the merge,
sharing the same struct for their responses (with distinct typespecs).

 Anchor for this section

Functions

 Link to this function

 group_schema(raw_module_and_type, state)

 View Source

 @spec group_schema(raw_module_and_type(), OpenAPI.Processor.State.t()) ::
 raw_module_and_type()

Group schema modules into configured namespaces
This function accepts a tuple with the module and type of a schema as strings, along with the
processor state, and returns a modified tuple according to the configured groups.

 discussion

 Discussion

Schemas in an OpenAPI description can have extensively long names. For example, GitHub has a
schema called actions-cache-usage-by-repository. Along with all other actions-related schemas,
we can cut down the top-level module namespace by grouping on Actions or even further:
group: [
 Actions,
 Actions.CacheUsage
]
Even simple renaming and groups can take a raw OpenAPI description and turn it into a library
that feels friendly to users.

 configuration

 Configuration

Module namespaces can be configured as a list of modules in the naming.group key of a
configuration profile:
config :oapi_generator, default: [
 naming: [
 group: [
 Author,
 Author.Bio
 Comment,
 # ...
]
]
]

 examples

 Examples

The configuration above includes three module namespaces for grouping: Author, Author.Bio,
and Comment. These rules would create the following transformations (types omitted because
they do not change):
AuthorAvatar => Author.Avatar
AuthorBio => Author.Bio
AuthorBioUpdate => Author.Bio.Update
PostComment => PostComment
Note that the desired grouping must appear at the start of the module name: PostComment is
unaffected by the Comment group configuration. As a result, it is also important that Author
appear in the configuration before Author.Bio, otherwise Author.Bio would fail to match the
beginning of AuthorBioUpdate resulting in Author.BioUpdate (since the Author configuration
would still match afterwards).

 Link to this function

 merge_schema(raw_module_and_type, state)

 View Source

 @spec merge_schema(raw_module_and_type(), OpenAPI.Processor.State.t()) ::
 raw_module_and_type()

Merge schemas based on configured pairs of patterns and replacements
This function accepts a tuple with the module and type of a schema as strings, along with the
processor state, and returns a modified tuple according to the configured merges.

 discussion

 Discussion

OpenAPI descriptions may have multiple schemas that are closely related or even duplicated.
Merging gives the power to consolidate these schemas into a single struct that is easy to use.
For example, the GitHub API description used to have schemas repository, full-repository,
and nullable-repository. While the "full" repository added additional properties, the
"nullable" variant was just that: all of the same properties, but the schema was nullable. This
kind of oddity in the OpenAPI specification is exactly what makes most generated code difficult
to use.
The following merge settings would help clean this up:
merge: [
 {"FullRepository", "Repository"},
 {~r/^Nullable/, ""}
]
In the first line, we tell the generator to merge FullRepository into Repository (the
original module names based on the names of the schemas). Because the destination module appears
at the end of the original module, the word "Repository" will be dropped from the type:
FullRepository => Repository :: Repository.full()
This renaming of the type is automatic for prefixes and suffixes. If no overlap is found, then
the full (underscored) schema name will be used for the type:
SimpleUser => User :: User.simple()
PullRequestSimple => PullRequest :: PullRequest.simple()
MySchema => Unrelated :: Unrelated.my_schema()
If the destination module is later renamed or grouped, the merged schemas will processed in the
same way.

 configuration

 Configuration

Merges are configured as a list of tuples in the naming.merge key of a configuration profile:
config :oapi_generator, default: [
 naming: [
 merge: [
 {"PrivateUser", "User"},
 {~r/Simple$/, ""}
]
]
]
If the first element of the tuple is a string, it will be compared for an exact match to the
schema's module name. If the first element of the tuple is a regular express, it will be
compared to the schema's module name using Regex.match?/2. If it matches, the module name will
be replaced with the second element of the tuple.
After the module name replacement, the type name may be modified. If new the module name is the
first or last part of the original module name, the leftover portion will be used as the type.
For example, with the configuration above, the following transformations take place:
PrivateUser.t() => User.private()
UserSimple.t() => User.simple()
In the case that the new module name is not a prefix or suffix of the original, the entire
underscored original module name is used as the new type.

 Link to this function

 normalize_identifier(input, casing \\ :snake)

 View Source

 @spec normalize_identifier(String.t(), :camel | :snake) :: String.t()

Normalize an identifier into CamelCase or snake_case

 example

 Example

iex> normalize_identifier("get-/customer/purchases/{date}_byId")
"get_customer_purchases_date_by_id"

iex> normalize_identifier("openAPISpec", :camel)
"OpenAPISpec"

 Link to this function

 raw_schema_module_and_type(state, schema, schema_spec)

 View Source

 @spec raw_schema_module_and_type(
 OpenAPI.Processor.State.t(),
 OpenAPI.Processor.Schema.t(),
 OpenAPI.Spec.Schema.t()
) :: {module :: String.t() | nil, type :: String.t()}

Choose a starting schema module and type name based on title and context
Returns a tuple containing the {module, type}, such as {"MySchema", "t"}.
This function does not consider schema renaming or merging. It uses the title, context, and
location of the schema within the specification to determine an initial set of names. Schemas
located in components/schemas are named based on their key in the schemas map, so a schema
located at components/schemas/my_schema will become MySchema.t(). If a schema has a
context attached (such as a request body or response body for an operation) then it will be
named based on the operation. Finally, if a schema has a defined title, this will be used as
the name. If none of this information is available, {nil, "map"} is returned.
Callers of this function will almost certainly want to perform further processing.

 Link to this function

 readable_content_type(content_type)

 View Source

 @spec readable_content_type(String.t()) :: String.t()

Turn a content type (ex. "application/json") into a readable type (ex. "json")
This is used by the default implementation of the schema module/type name function while
constructing the type of a request or response body that is otherwise unnamed. If an unknown
content type is passed, this function returns an empty string to avoid including the content
type in the name (although this could cause collisions).

 Link to this function

 rename_schema(raw_module_and_type, state)

 View Source

 @spec rename_schema(raw_module_and_type(), OpenAPI.Processor.State.t()) ::
 raw_module_and_type()

Rename schema modules based on configured patterns
This function accepts a tuple with the module and type of a schema as strings, along with the
processor state, and returns a modified tuple according to the configured replacements.

 configuration

 Configuration

Module replacements can be configured as a list of tuples in the naming.rename key of a
configuration profile:
config :oapi_generator, default: [
 naming: [
 rename: [
 {"Api", "API"},
 {~r/^Bio/, "Author.Bio"},
 # ...
]
]
]
The contents of each tuple will be fed into String.replace/3, for example:
> String.replace("MyApiResponse", "Api", "API")

 examples

 Examples

In the configuration above, there are two replacements configured: the string pattern "Api"
will be replaced with "API", and the regular expression pattern ^Bio will be replaced with
"Author.Bio". These rules would create the following transformations (types omitted because
they do not change):
MyApiResponse => MyAPIResponse
Apiary => APIary
BioUpdate => Author.BioUpdate
EditorBio => EditorBio
Note that replacements can have unintended side-effects. For example, while we correctly
capitalized MyApiResponse using the "Api" pattern, we also replaced APIary. Regular
expressions lend more powerful and precise replacement patterns. This includes the ability to
use capture expressions (ex. ~r/(Api)([A-Z]|$)/) and replacements that reference those
captures (ex. "API\\2"). See String.replace/3 for more information.

OpenAPI.Processor.Operation

Default plugin for formatting operations
This module also provides the Operation struct that is used by the renderer.

 Anchor for this section

 Summary

 Types

 method()

 HTTP method

 request_body()

 Request content types and their associated schemas

 request_body_unprocessed()

 Request content types and their associated schema specs

 response_body()

 Response status codes and their associated schemas

 response_body_unprocessed()

 Response status codes and their associated schema specs

 t()

 Processed operation data used by the renderer

 Default Implementations

 docstring(state, operation, query_params)

 Create the contents of an @doc string for the given operation

 request_body(state, arg2)

 Collect request content types and their associated schemas

 request_method(state, operation)

 Cast the HTTP method to an atom

 response_body(state, operation)

 Collect response status codes and their associated schemas

 Anchor for this section

Types

 Link to this type

 method()

 View Source

 @type method() :: :get | :put | :post | :delete | :options | :head | :patch | :trace

HTTP method

 Link to this type

 request_body()

 View Source

 @type request_body() :: [
 {content_type :: String.t(), schema :: OpenAPI.Processor.Type.t()}
]

Request content types and their associated schemas

 Link to this type

 request_body_unprocessed()

 View Source

 @type request_body_unprocessed() :: [
 {content_type :: String.t(), schema :: OpenAPI.Spec.Schema.t()}
]

Request content types and their associated schema specs

 Link to this type

 response_body()

 View Source

 @type response_body() :: [
 {status :: integer() | :default,
 schemas :: %{required(String.t()) => OpenAPI.Processor.Type.t()}}
]

Response status codes and their associated schemas

 Link to this type

 response_body_unprocessed()

 View Source

 @type response_body_unprocessed() :: [
 {status :: integer() | :default,
 schemas :: %{required(String.t()) => OpenAPI.Spec.Schema.t()}}
]

Response status codes and their associated schema specs

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Processor.Operation{
 docstring: String.t(),
 function_name: atom(),
 module_name: atom(),
 request_body: request_body(),
 request_method: atom(),
 request_path: String.t(),
 request_path_parameters: [OpenAPI.Processor.Operation.Param.t()],
 request_query_parameters: [OpenAPI.Processor.Operation.Param.t()],
 responses: response_body()
}

Processed operation data used by the renderer

 Anchor for this section

Default Implementations

 Link to this function

 docstring(state, operation, query_params)

 View Source

 @spec docstring(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t(), [
 OpenAPI.Processor.Operation.Param.t()
]) :: String.t()

Create the contents of an @doc string for the given operation
Default implementation of OpenAPI.Processor.operation_docstring/3.
The docstring constructed by this function will contain a summary line provided by the operation
summary (if available) or the request method and path otherwise. It will incorporate the
operation description (if available) and link to any included external documentation. Finally,
all query parameters (which are part of the opts argument) are documented.
@doc """
Summary of the operation or method and path

Description of the operation, which generally provides more information.

Options

 * `param`: query parameter description

Resources

 * [External Doc Description](link to external documentation)

"""

 Link to this function

 request_body(state, arg2)

 View Source

 @spec request_body(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t()) ::
 request_body_unprocessed()

Collect request content types and their associated schemas
Default implementation of OpenAPI.Processor.operation_request_body/2.

 Link to this function

 request_method(state, operation)

 View Source

 @spec request_method(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t()) ::
 method()

Cast the HTTP method to an atom
Default implementation of OpenAPI.Processor.operation_request_method/2.

 Link to this function

 response_body(state, operation)

 View Source

 @spec response_body(OpenAPI.Processor.State.t(), OpenAPI.Spec.Path.Operation.t()) ::
 response_body_unprocessed()

Collect response status codes and their associated schemas
Default implementation of OpenAPI.Processor.operation_response_body/2.
In this implementation, all schemas are returned regardless of content type. It is possible for
the same status code to have multiple schemas, in which case the renderer should compose a
union type for the response.

OpenAPI.Processor.Operation.Param

Provides the Param struct that is used by the renderer

 Anchor for this section

 Summary

 Types

 location()

 Location of the param

 t()

 Processed param data used by the renderer

 Anchor for this section

Types

 Link to this type

 location()

 View Source

 @type location() :: :cookie | :header | :path | :query

Location of the param

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Processor.Operation.Param{
 description: String.t() | nil,
 location: location(),
 name: String.t(),
 value_type: OpenAPI.Processor.Type.t()
}

Processed param data used by the renderer

OpenAPI.Processor.Schema

Processed schema used by the renderer
This struct is created by the Processor to hold only the data necessary for rendering schemas
and their types. It has the following fields:
	context: List of contexts where the schema is found in the API description.
	fields: List of OpenAPI.Processor.Schema.Field.t/0 structs contained in the schema.
	module_name: Name of the module where the schema will be defined.
	output_format: Intended format of the output (ex. struct or typespec).
	ref: Reference of the schema and its original spec in the processor state.
	type_name: Name of the schema's type within its module.

All of this data is managed by the code generator, and it is unlikely that a callback would
need to modify this struct directly.

 Anchor for this section

 Summary

 Types

 format()

 Format of rendering the schema (full struct or inline typespec)

 t()

 Processed schema used by the renderer

 Anchor for this section

Types

 Link to this type

 format()

 View Source

 @type format() :: :struct | :type | :none

Format of rendering the schema (full struct or inline typespec)

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Processor.Schema{
 context: [tuple()],
 fields: [OpenAPI.Processor.Schema.Field.t()],
 module_name: module(),
 output_format: format() | nil,
 ref: reference(),
 type_name: atom()
}

Processed schema used by the renderer

OpenAPI.Processor.Schema.Field

Provides the Field struct that is used by the renderer
This struct is created by the Processor to hold only the data necessary for rendering fields
and their types. It has the following fields:
	name: Name of the field in its parent schema
	nullable: Whether the field is defined as nullable
	private: Whether the field was added via the output.extra_fields configuration
	required: Whether the field is marked as required by its parent schema
	type: Internal representation of the field's type

 Anchor for this section

 Summary

 Types

 t()

 Processed field data used by the renderer

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Processor.Schema.Field{
 name: String.t(),
 nullable: boolean(),
 private: boolean(),
 required: boolean(),
 type: OpenAPI.Processor.Type.t()
}

Processed field data used by the renderer

OpenAPI.Processor.State

State of the process phase of code generation
This struct is created at the beginning of the process phase using data from the overall
generator OpenAPI.State. It has the following fields:
	implementation: Module configured as the implementation of the processor (defaults to
OpenAPI.Processor). Callbacks must use this field when calling other process callbacks.
	operations: Cumulative list of OpenAPI.Processor.Operation.t/0 structs identified
and processed so far.
	profile: Name of the active configuration profile. Callbacks must use this field when
looking up configuration from the application environment.
	schema_specs_by_path: Map of raw schema specifications keyed by the original paths where
they could be found in the spec files, as provided by the read phase. This map may include
schemas that are not used in operations.
	schema_specs_by_ref: Cumulative map of raw schema specifications keyed by the internal
refs used to refer to them in types.
	schema_refs_by_path: Cumulative map of internal refs used to refer to schemas keyed by
the original paths where they could be found in the spec files.
	schemas_by_ref: Cumulative map of processed OpenAPI.Processor.Schema.t/0 structs
keyed by the internal refs used to refer to them in types, as they are processed.
	spec: The original parsed OpenAPI description.

All of this data is managed by the code generator, and it is unlikely that a callback would
need to transform this struct directly.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 put_new_schema(state, ref, schema)

 Add a processed schema to the processor state by its reference only if is is not already present

 put_schema(state, ref, schema)

 Add a processed schema to the processor state by its reference

 put_schema_spec(state, schema_spec)

 Add a schema spec to the processor state and generate a reference for it

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Processor.State{
 implementation: module(),
 operations: [OpenAPI.Processor.Operation.t()],
 profile: atom(),
 schema_refs_by_path: %{required(term()) => reference()},
 schema_specs_by_path: term(),
 schema_specs_by_ref: %{required(reference()) => OpenAPI.Spec.Schema.t()},
 schemas_by_ref: %{required(reference()) => OpenAPI.Processor.Schema.t()},
 spec: OpenAPI.Spec.t()
}

 Anchor for this section

Functions

 Link to this function

 put_new_schema(state, ref, schema)

 View Source

 @spec put_new_schema(t(), reference(), OpenAPI.Processor.Schema.t()) :: t()

Add a processed schema to the processor state by its reference only if is is not already present

 Link to this function

 put_schema(state, ref, schema)

 View Source

 @spec put_schema(t(), reference(), OpenAPI.Processor.Schema.t()) :: t()

Add a processed schema to the processor state by its reference

 Link to this function

 put_schema_spec(state, schema_spec)

 View Source

 @spec put_schema_spec(t(), OpenAPI.Spec.Schema.t()) :: {t(), reference()}

Add a schema spec to the processor state and generate a reference for it

OpenAPI.Processor.Type

 Anchor for this section

 Summary

 Types

 literal()

 Literal values, as found in const and enum definitions

 primitive()

 Basic type

 string_format()

 Special cases of the string type

 t()

 Internal representation of types

 unnatural()

 Unnatural types introduced by the generator

 Functions

 from_schema(state, schema)

 Create an internal type representation of the given schema

 reduce(type, accumulator, callback)

 Anchor for this section

Types

 Link to this type

 literal()

 View Source

 @type literal() :: binary() | boolean() | number() | nil

Literal values, as found in const and enum definitions

 Link to this type

 primitive()

 View Source

 @type primitive() ::
 :boolean | :integer | :number | {:string, string_format()} | :null

Basic type
These types represent a subset of the six primitive values defined by JSON schema (omitting
object and array, which are represented in t/0.) Note that both integer and number are
acceptable types, with the latter covering both integer and decimal numbers.

 Link to this type

 string_format()

 View Source

 @type string_format() ::
 :generic
 | :binary
 | :date
 | :date_time
 | :duration
 | :email
 | :hostname
 | :idn_email
 | :idn_hostname
 | :iri
 | :iri_reference
 | :ipv4
 | :ipv6
 | :json_pointer
 | :password
 | :regex
 | :relative_json_pointer
 | :time
 | :uri
 | :uri_reference
 | :uri_template
 | :uuid

Special cases of the string type
binary represents binary data that may be encoded, while generic represents a generic string
without a formatting constraint.

 Link to this type

 t()

 View Source

 @type t() ::
 primitive()
 | unnatural()
 | {:array, t()}
 | {:const, literal()}
 | {:enum, [literal()]}
 | {:union, [t()]}
 | reference()

Internal representation of types
In addition to the primitive/0 types, values can be constants or enums defined by
literal/0 values. They can also be arrays or objects, as well as the union of multiple
type definitions. If a value is nullable, it will be expressed as the union with :null.
Elixir references (reference/0) represent schemas stored in the processor State.

 Link to this type

 unnatural()

 View Source

 @type unnatural() :: :any | :map

Unnatural types introduced by the generator
These types may be introduced in extra fields or when referenced schemas are ignored.

 Anchor for this section

Functions

 Link to this function

 from_schema(state, schema)

 View Source

 @spec from_schema(
 %OpenAPI.Processor.State{
 implementation: term(),
 operations: term(),
 profile: term(),
 schema_refs_by_path: term(),
 schema_specs_by_path: term(),
 schema_specs_by_ref: term(),
 schemas_by_ref: term(),
 spec: term()
 },
 OpenAPI.Spec.Schema.t() | OpenAPI.Spec.ref()
) :: {OpenAPI.Processor.State.t(), t()}

Create an internal type representation of the given schema
This function supports referencing object schemas in the processor state. As a result, if it
encounters an object schema as a sub-field of the given schema, it will potentially modify the
processor state in order to stash a new reference.

 Link to this function

 reduce(type, accumulator, callback)

 View Source

 @spec reduce(t(), acc, (t(), acc -> acc)) :: acc when acc: any()

OpenAPI.Renderer behaviour

Phase three of code generation
The render phase begins with operation and schema structs created during the process
phase. It uses this data to construct and save files containing Elixir source code. Most of
the work done by this phase involves the manipulation of Elixir ASTs.

 Anchor for this section

 Summary

 Callbacks

 format(state, file)

 Convert the Abstract Syntax Tree (AST) form of the file into formatted code

 location(state, file)

 Choose the filesystem location for a rendered file to be written

 render(state, file)

 Create the contents of a file in quoted Abstract Syntax Tree (AST) form

 render_default_client(state, file)

 Render the @default_client module attribute in an operation module

 render_moduledoc(state, file)

 Render the @moduledoc portion of the file

 render_operation(state, operation)

 Render the associated types, docstring, typespec, and function for a single operation

 render_operation_doc(state, operation)

 Render the @doc portion of an operation function

 render_operation_function(state, operation)

 Render the main function portion of an operation

 render_operation_spec(state, operation)

 Render the @spec portion of an operation function

 render_operations(state, file)

 Render the associated types, docstring, typespec, and function for all operations

 render_schema(state, file)

 Render the types, struct, and field function for schemas not related to an operation

 render_schema_field_function(state, schemas)

 Render a function __fields__/1 that return a keyword list of schema fields and their types

 render_schema_struct(state, schemas)

 Render the defstruct call for the schema types contained in the file

 render_schema_types(state, schemas)

 Render the typespecs for schema types contained in the file

 render_using(state, file)

 Render one or more use statements to include in the file

 write(state, file)

 Write a rendered file to the filesystem

 Functions

 run(state)

 Anchor for this section

Callbacks

 Link to this callback

 format(state, file)

 View Source

 (optional)

 @callback format(state :: OpenAPI.Renderer.State.t(), file :: OpenAPI.Renderer.File.t()) ::
 iodata()

Convert the Abstract Syntax Tree (AST) form of the file into formatted code
This callback can expect a OpenAPI.Renderer.File.t/0 struct with the completed contents of
the file included in the ast field. Nodes of the AST may include optional formatting metadata
(ex. delimiter, indentation, or end_of_expression). It is recommended that the formatter
adhere to the standard configuration of the default Mix formatter (for example, formatting to a
line width of 98) in order to avoid a large amount of changes should someone run mix format on
the generated code.
The return value of the callback can be iodata (strings do not need to be concatenated), and
it will be stored in the contents field of the file.
See OpenAPI.Renderer.Util.format/2 for the default implementation.

 Link to this callback

 location(state, file)

 View Source

 (optional)

 @callback location(state :: OpenAPI.Renderer.State.t(), file :: OpenAPI.Renderer.File.t()) ::
 String.t()

Choose the filesystem location for a rendered file to be written
See OpenAPI.Renderer.Module.filename/2 for the default implementation.

 Link to this callback

 render(state, file)

 View Source

 (optional)

 @callback render(state :: OpenAPI.Renderer.State.t(), file :: OpenAPI.Renderer.File.t()) ::
 Macro.t()

Create the contents of a file in quoted Abstract Syntax Tree (AST) form
This callback is the primary function called to render a file. The default implementation calls
several other callbacks, each of which my be overridden separately:
	OpenAPI.Renderer.render_moduledoc/2
	OpenAPI.Renderer.render_using/2
	OpenAPI.Renderer.render_default_client/2
	OpenAPI.Renderer.render_schema/2
	OpenAPI.Renderer.render_operations/2

See OpenAPI.Renderer.Module.render/2 for the default implementation.

 Link to this callback

 render_default_client(state, file)

 View Source

 (optional)

 @callback render_default_client(
 state :: OpenAPI.Renderer.State.t(),
 file :: OpenAPI.Renderer.File.t()
) ::
 Macro.t()

Render the @default_client module attribute in an operation module
When using the default operation function renderer, every operation function includes a line:
client = opts[:client] || @default_client
This allows callers to override the client implementation without having to pass the default
module in as an argument. This callback renders the definition of the @default_client module
attribute, effectively choosing which module will be called for every operation.
See OpenAPI.Renderer.Module.render_default_client/2 for the default implementation.

 Link to this callback

 render_moduledoc(state, file)

 View Source

 (optional)

 @callback render_moduledoc(
 state :: OpenAPI.Renderer.State.t(),
 file :: OpenAPI.Renderer.File.t()
) ::
 Macro.t()

Render the @moduledoc portion of the file
Users of a client library may lean on this documentation to find the operation or schema they
need. While the default implementation presents a fairly basic line of documentation depending
on whether the file contains operations or a schema, custom implementations of this callback
could provide rich and helpful instructions to consumers.
See OpenAPI.Renderer.Module.render_moduledoc/2 for the default implementation.

 Link to this callback

 render_operation(state, operation)

 View Source

 (optional)

 @callback render_operation(
 state :: OpenAPI.Renderer.State.t(),
 operation :: OpenAPI.Processor.Operation.t()
) :: Macro.t()

Render the associated types, docstring, typespec, and function for a single operation
The default implementation of this function calls several other callbacks (all named
render_operation_*) which can be overridden individually.
See OpenAPI.Renderer.Operation.render/2 for the default implementation.

 Link to this callback

 render_operation_doc(state, operation)

 View Source

 (optional)

 @callback render_operation_doc(
 state :: OpenAPI.Renderer.State.t(),
 operation :: OpenAPI.Processor.Operation.t()
) :: Macro.t()

Render the @doc portion of an operation function
See OpenAPI.Renderer.Operation.render_doc/2 for the default implementation.

 Link to this callback

 render_operation_function(state, operation)

 View Source

 (optional)

 @callback render_operation_function(
 state :: OpenAPI.Renderer.State.t(),
 operation :: OpenAPI.Processor.Operation.t()
) :: Macro.t()

Render the main function portion of an operation
See OpenAPI.Renderer.Operation.render_function/2 for the default implementation.

 Link to this callback

 render_operation_spec(state, operation)

 View Source

 (optional)

 @callback render_operation_spec(
 state :: OpenAPI.Renderer.State.t(),
 operation :: OpenAPI.Processor.Operation.t()
) :: Macro.t()

Render the @spec portion of an operation function
See OpenAPI.Renderer.Operation.render_spec/2 for the default implementation.

 Link to this callback

 render_operations(state, file)

 View Source

 (optional)

 @callback render_operations(
 state :: OpenAPI.Renderer.State.t(),
 file :: OpenAPI.Renderer.File.t()
) ::
 Macro.t()

Render the associated types, docstring, typespec, and function for all operations
This is the primary function called to render all operations in a file. The default
implementation calls several other callbacks (all named render_operation*) which can be
overridden individually.
See OpenAPI.Renderer.Operation.render_all/2 for the default implementation.

 Link to this callback

 render_schema(state, file)

 View Source

 (optional)

 @callback render_schema(
 state :: OpenAPI.Renderer.State.t(),
 file :: OpenAPI.Renderer.File.t()
) :: Macro.t()

Render the types, struct, and field function for schemas not related to an operation
This is the primary function called to render schemas. The default implementation calls several
other callbacks (all named render_schema_*) which can be overridden individually.
See OpenAPI.Renderer.Schema.render/2 for the default implementation.

 Link to this callback

 render_schema_field_function(state, schemas)

 View Source

 (optional)

 @callback render_schema_field_function(
 state :: OpenAPI.Renderer.State.t(),
 schemas :: [OpenAPI.Processor.Schema.t()]
) :: Macro.t()

Render a function __fields__/1 that return a keyword list of schema fields and their types
See OpenAPI.Renderer.Schema.render_field_function/2 for the default implementation.

 Link to this callback

 render_schema_struct(state, schemas)

 View Source

 (optional)

 @callback render_schema_struct(
 state :: OpenAPI.Renderer.State.t(),
 schemas :: [OpenAPI.Processor.Schema.t()]
) :: Macro.t()

Render the defstruct call for the schema types contained in the file
See OpenAPI.Renderer.Schema.render_struct/2 for the default implementation.

 Link to this callback

 render_schema_types(state, schemas)

 View Source

 (optional)

 @callback render_schema_types(
 state :: OpenAPI.Renderer.State.t(),
 schemas :: [OpenAPI.Processor.Schema.t()]
) :: Macro.t()

Render the typespecs for schema types contained in the file
See OpenAPI.Renderer.Schema.render_types/2 for the default implementation.

 Link to this callback

 render_using(state, file)

 View Source

 (optional)

 @callback render_using(
 state :: OpenAPI.Renderer.State.t(),
 file :: OpenAPI.Renderer.File.t()
) :: Macro.t()

Render one or more use statements to include in the file
Another route for customization of the outputted code is via meta-programming. This callback
enables library authors to use any module they like at the top of files that contain schemas,
operations, or both. The referenced modules can then perform additional compile-time changes.
See OpenAPI.Renderer.Module.render_using/2 for the default implementation.

 Link to this callback

 write(state, file)

 View Source

 (optional)

 @callback write(state :: OpenAPI.Renderer.State.t(), file :: OpenAPI.Renderer.File.t()) ::
 :ok

Write a rendered file to the filesystem
This callback can expect to receive a OpenAPI.Renderer.File.t/0 struct with formatted file
contents expressed as iodata in the contents field. It should write the file to the
filesystem at the appropriate location included in the location field. While the return value
is irrelevant, a simple :ok will suffice.
See OpenAPI.Renderer.Util.write/2 for the default implementation.

 Anchor for this section

Functions

 Link to this function

 run(state)

 View Source

 @spec run(OpenAPI.State.t()) :: OpenAPI.State.t()

OpenAPI.Renderer.File

Collection of operations and schemas that belong to the same file
As rendering occurs for a particular file, this struct will collect all of the necessary data
to continue the process. It has the following fields:
	ast: Once rendered, the Abstract Syntax Tree (AST), or quoted form, of the file contents.
This AST may include additional formatting-related metadata.
	contents: Once formatted, the iodata form of the file contents. This is what will be
used by the default implementation of the write callback.
	location: Once determined, the filesystem location (path) where the file is intended to
be written.
	module: Name of the Elixir module contained in the file.
	operations: List of OpenAPI.Processor.Operation.t/0 contained in the file.
	schemas: List of OpenAPI.Processor.Schema.t/0 contained in the file.

All of this state is managed by the code generator, so it is unlikely that callbacks would need
to write to this struct directly.

 Anchor for this section

 Summary

 Types

 t()

 File contents

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Renderer.File{
 ast: Macro.t() | nil,
 contents: iodata() | nil,
 location: String.t() | nil,
 module: module(),
 operations: [OpenAPI.Processor.Operation.t()],
 schemas: [OpenAPI.Processor.Schema.t()]
}

File contents
See module documentation for additional information.

OpenAPI.Renderer.Module

Default implementation for callbacks related to rendering operation and schema modules
This module contains the default implementations for:
	OpenAPI.Renderer.location/2
	OpenAPI.Renderer.render/2
	OpenAPI.Renderer.render_default_client/2
	OpenAPI.Renderer.render_moduledoc/2
	OpenAPI.Renderer.render_using/2

These focus on portions of modules that may appear in both schema and operation modules.
Configuration
All configuration offered by the functions in this module lives under the output key of the
active configuration profile. For example (default values shown):
config/config.exs

config :oapi_generator, default: [
 output: [
 base_module: nil,
 default_client: Client,
 location: "",
 operation_subdirectory: "",
 operation_use: nil,
 schema_subdirectory: "",
 schema_use: nil
]
]

 Anchor for this section

 Summary

 Functions

 filename(state, file)

 Choose the filesystem location for the given file based on its module name and contents

 render(state, file)

 Create the contents of a file in quoted Abstract Syntax Tree (AST) form

 render_default_client(state, file)

 Construct the @default_client module attribute for modules with operations

 render_moduledoc(state, file)

 Construct the @moduledoc portion of the file based on the file contents

 render_using(state, file)

 Construct any use statements that should be included in the file

 Anchor for this section

Functions

 Link to this function

 filename(state, file)

 View Source

 @spec filename(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: String.t()

Choose the filesystem location for the given file based on its module name and contents
Default implementation of OpenAPI.Renderer.location/2.
If the file does not contain any operations, the file name is chosen as the concatenation of:
	The base location set in the output configuration,
	The schema_subdirectory set in the output configuration, and
	The underscored module name (ex. Some.Schema becomes some/schema.ex)

 configuration

 Configuration

Use output.location to set the directory of all outputted files (ex. lib). Then, optionally
split operations and schemas into separate directories using output.operation_subdirectory
and output.schema_subdirectory. This can be useful to show which modules are generated vs.
those that are written by hand.
config :oapi_generator, default: [
 output: [
 location: "lib",
 operation_subdirectory: "operations",
 schema_subdirectory: "schemas"
]
]
With this configuration, an schema module named My.ExampleSchema would be output to
lib/schemas/my/example_schema.ex.

 Link to this function

 render(state, file)

 View Source

 @spec render(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: Macro.t()

Create the contents of a file in quoted Abstract Syntax Tree (AST) form
Default implementation of OpenAPI.Renderer.render/2.
This callback is the primary function called to render a file. It makes use of several other
callbacks of the renderer (in this order), each of which my be overridden separately:
	OpenAPI.Renderer.render_moduledoc/2
	OpenAPI.Renderer.render_using/2
	OpenAPI.Renderer.render_default_client/2
	OpenAPI.Renderer.render_schema/2
	OpenAPI.Renderer.render_operations/2

Besides concatenating the results of these functions, this function also writes the defmodule
call itself.

 configuration

 Configuration

Use output.base_module to determine a prefix to the name of all modules created by the
generator. For example, given the following configuration:
config :oapi_generator, default: [
 output: [
 base_module: MyClientLibrary
]
]
A file with module name MySchema would be output as MyClientLibrary.MySchema. Usually, this
configuration contains the name of your library's root module.

 Link to this function

 render_default_client(state, file)

 View Source

 @spec render_default_client(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) ::
 Macro.t()

Construct the @default_client module attribute for modules with operations
Default implementation of OpenAPI.Renderer.render_default_client/2.
This allows callers to override the client implementation without having to pass the default
module in as an argument. This callback renders the definition of the @default_client module
attribute, effectively choosing which module will be called for every operation.

 configuration

 Configuration

Use output.default_client to choose which module is set. A value of false or nil will
cause the module attribute not to be set at all, which may cause compilation errors if using
the default implementation of the operation function renderer.
config :oapi_generator, default: [
 output: [
 default_client: MyLib.MyClient
]
]
This will result in a statement @default_client MyLib.MyClient to be added to any module that
contains operations. Note that the output.base_module configuration is not used in this case.
If the configuration is unset, then a default module of [base module].Client will be used,
based on the output.base_module configuration.

 Link to this function

 render_moduledoc(state, file)

 View Source

 @spec render_moduledoc(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) ::
 Macro.t()

Construct the @moduledoc portion of the file based on the file contents
Default implementation of OpenAPI.Renderer.render_moduledoc/2.
This function provides a basic moduledoc for each file. If the file contains only schemas, then
the moduledoc focuses on the structs and types it provides:
Provides struct and types for a MySchema

If the file contains operations, it focuses on those:
Provides API endpoints related to MyOperations

 Link to this function

 render_using(state, file)

 View Source

 @spec render_using(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: Macro.t()

Construct any use statements that should be included in the file
Default implementation of OpenAPI.Renderer.render_using/2.
Another route for customization of the outputted code is via meta-programming. This callback
enables library authors to use any module they like at the top of files that contain schemas,
operations, or both. The referenced modules can then perform additional compile-time changes.

 configuration

 Configuration

Use output.operation_use to include a use statement at the top of each file that contains
any operations, and output.schema_use to similarly include a use statement at the top of
files containing a schema. Keep in mind that some files may contain both operations and a
schema.
config :oapi_generator, default: [
 output: [
 schema_use: MyLib.Schema
]
]
This will result in a statement use MyLib.Schema (note that the output.base_module
configuration is not used in this context).

OpenAPI.Renderer.Operation

Default implementation for callbacks related to rendering operations
This module contains the default implementations for:
	OpenAPI.Renderer.render_operations/2
	OpenAPI.Renderer.render_operation/2
	OpenAPI.Renderer.render_operation_doc/2
	OpenAPI.Renderer.render_operation_function/2
	OpenAPI.Renderer.render_operation_spec/2

These focus on the operation functions and surrounding code.
Configuration
All configuration offered by the functions in this module lives under the output key of the
active configuration profile. For example (default values shown):
config/config.exs

config :oapi_generator, default: [
 output: [
 base_module: nil,
 operation_call: [
 request: :list
],
 types: [
 error: nil
]
]
]

 Anchor for this section

 Summary

 Functions

 render(state, operation)

 Render a single operation

 render_all(state, file)

 Render all of the operations contained in a single module

 render_call(state, operation)

 Render a call to client.request/1 in the body of an operation function

 render_call_request_info(state, request_body, format)

 Renders a keyword list element containing information about the request body

 render_doc(state, operation)

 Render the docstring for an operation function

 render_function(state, operation)

 Render the function definition for an operation function

 render_query(operation)

 Render code to handle query params in the body of an operation function

 render_spec(state, operation)

 Render the spec of an operation function

 Anchor for this section

Functions

 Link to this function

 render(state, operation)

 View Source

 @spec render(OpenAPI.Renderer.State.t(), OpenAPI.Processor.Operation.t()) :: Macro.t()

Render a single operation
Default implementation of OpenAPI.Renderer.render_operation/2.
This implementation calls the following callbacks and concatenates their results:
	OpenAPI.Renderer.render_operation_doc/2
	OpenAPI.Renderer.render_operation_spec/2
	OpenAPI.Renderer.render_operation_function/2

 Link to this function

 render_all(state, file)

 View Source

 @spec render_all(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: Macro.t()

Render all of the operations contained in a single module
Default implementation of OpenAPI.Renderer.render_operations/2.
This implementation iterates through the operations contained in a file, sorted by their
function name, and calls both OpenAPI.Renderer.render_operation/2 and
OpenAPI.Renderer.render_schema_types/2 callbacks for each. The latter is only given schemas
that have an output format of :typed_map and relate exclusively to the operation. Afterwards,
it calls OpenAPI.Renderer.render_schema_field_function/2 for all schemas that had types
output earlier. It returns a list of AST nodes.

 Link to this function

 render_call(state, operation)

 View Source

 @spec render_call(OpenAPI.Renderer.State.t(), OpenAPI.Processor.Operation.t()) ::
 Macro.t()

Render a call to client.request/1 in the body of an operation function
This function is called by the default implementation of
OpenAPI.Renderer.render_operation_function/2 (see render_function/2). It returns code
similar to this:
client.request(%{...})
Warning: This function is public for the benefit of plugin implementers who wish to
replicate portions of the default implementation. It is subject to change.

 Link to this function

 render_call_request_info(state, request_body, format)

 View Source

 @spec render_call_request_info(
 OpenAPI.Renderer.State.t(),
 OpenAPI.Processor.Operation.request_body(),
 atom()
) :: Macro.t()

Renders a keyword list element containing information about the request body
The second argument accepts a format for the output code, which can be :map or the default of
:list.
This function is called by the default implementation of
OpenAPI.Renderer.render_operation_function/2 (see render_function/2). It returns code
similar to this:
Default format:
request: [{"application/json", {MySchema, :t}}]

With format `:map`:
request: %{"application/json" => {MySchema, :t}}
Warning: This function is public for the benefit of plugin implementers who wish to
replicate portions of the default implementation. It is subject to change.

 Link to this function

 render_doc(state, operation)

 View Source

 @spec render_doc(OpenAPI.Renderer.State.t(), OpenAPI.Processor.Operation.t()) ::
 Macro.t()

Render the docstring for an operation function
Default implementation of OpenAPI.Renderer.render_operation_doc/2.
This implementation uses the docstring created by the processor without modification.

 Link to this function

 render_function(state, operation)

 View Source

 @spec render_function(OpenAPI.Renderer.State.t(), OpenAPI.Processor.Operation.t()) ::
 Macro.t()

Render the function definition for an operation function
Default implementation of OpenAPI.Renderer.render_operation_function/2.
This implementation constructs a function that calls a dynamically chosen client module's
request function with details about the operation.

 configuration

 Configuration

Use output.operation_call to modify the format of output code within the function call. For
example, the following will output a map for the request body information:
config :oapi_generator, default: [
 output: [
 operation_call: [
 request: :map
]
]
]

 example

 Example

 def my_operation(path_param, body, opts \ []) do
 client = opts[:client] || @default_client
 query = Keyword.take(opts, [:query_param])

 client.request(%{
 args: [path_param: path_param, body: body],
 call: {Example.Operations, :my_operation},
 url: "/path/to/#{path_param}",
 body: body,
 method: :post,
 query: query,
 request: [{"application/json", :map}],
 response: [{200, :map}, {404, {Example.NotFoundError, :t}}],
 opts: opts
 })
 end

 Link to this function

 render_query(operation)

 View Source

 @spec render_query(OpenAPI.Processor.Operation.t()) :: Macro.t() | nil

Render code to handle query params in the body of an operation function
This function is called by the default implementation of
OpenAPI.Renderer.render_operation_function/2 (see render_function/2). It returns code
similar to this:
query = Keyword.take(opts, [:param1, :param2])
Warning: This function is public for the benefit of plugin implementers who wish to
replicate portions of the default implementation. It is subject to change.

 Link to this function

 render_spec(state, operation)

 View Source

 @spec render_spec(OpenAPI.Renderer.State.t(), OpenAPI.Processor.Operation.t()) ::
 Macro.t()

Render the spec of an operation function
Default implementation of OpenAPI.Renderer.render_operation_spec/2.

OpenAPI.Renderer.Schema

Default implementation for callbacks related to rendering schemas
This module contains the default implementations for:
	OpenAPI.Renderer.render_schema/2
	OpenAPI.Renderer.render_schema_field_function/2
	OpenAPI.Renderer.render_schema_struct/2
	OpenAPI.Renderer.render_schema_types/2

Extra Fields
It is sometimes useful for client libraries to store additional information on the structs
defined by the API description. This kind of private information is supported using the
output.extra_fields configuration. Each entry in the keyword list must use the name of the
field as the atom key and the type as the value. Types can be any valid
OpenAPI.Processor.Type.t/0.
Example:
config :oapi_generator, default: [
 output: [
 __info__: :map
]
]
This will result in a field info: map added to every schema typespec and :info added to
every struct definition.
Configuration
All configuration offered by the functions in this module lives under the output key of the
active configuration profile. For example (default values shown):
config/config.exs

config :oapi_generator, default: [
 output: [
 extra_fields: []
]
]

 Anchor for this section

 Summary

 Functions

 render(state, file)

 Render a schema, including typespecs, struct definition, and field function

 render_field_function(state, schemas)

 Render a function __fields__/1 that returns information about schema field types

 render_struct(state, schemas)

 Render a single struct definition for all of the given schemas

 render_types(state, schemas)

 Render the typespec(s) for all of the given schemas

 Anchor for this section

Functions

 Link to this function

 render(state, file)

 View Source

 @spec render(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: Macro.t()

Render a schema, including typespecs, struct definition, and field function
Default implementation of OpenAPI.Renderer.render_schema/2.
This implementation operates on schemas that appear in multiple contexts. If a schema appears
in exactly one context as the request or response body of a function, it will instead be
rendered by an operation callback.
This function calls the following other callbacks and concatenates their results:
	OpenAPI.Renderer.render_schema_types/2
	OpenAPI.Renderer.render_schema_struct/2
	OpenAPI.Renderer.render_schema_field_function/2

 Link to this function

 render_field_function(state, schemas)

 View Source

 @spec render_field_function(OpenAPI.Renderer.State.t(), [OpenAPI.Processor.Schema.t()]) ::
 Macro.t()

Render a function __fields__/1 that returns information about schema field types
Default implementation of OpenAPI.Renderer.render_schema_field_function/2.
This implementation renders a function spec and header with one clause for each schema type.

 Link to this function

 render_struct(state, schemas)

 View Source

 @spec render_struct(OpenAPI.Renderer.State.t(), [OpenAPI.Processor.Schema.t()]) ::
 Macro.t()

Render a single struct definition for all of the given schemas
Default implementation of OpenAPI.Renderer.render_schema_struct/2.
This implementation combines the fields of all schemas to create one struct. It also uses the
output.extra_fields configuration to add additional fields to the struct for private use by
the client library. See Extra Fields in this module's documentation.

 Link to this function

 render_types(state, schemas)

 View Source

 @spec render_types(OpenAPI.Renderer.State.t(), [OpenAPI.Processor.Schema.t()]) ::
 Macro.t()

Render the typespec(s) for all of the given schemas
Default implementation of OpenAPI.Renderer.render_schema_types/2.
This implementation uses the output.extra_fields configuration to add additional fields to
the struct for private use by the client library. See Extra Fields in this module's
documentation.

OpenAPI.Renderer.State

State of the render phase of code generation
This struct is created at the beginning of the render phase using data from the overall
generator OpenAPI.State. It has the following fields:
	files: Map of module names and their associated OpenAPI.Renderer.File.t/0 structs.
This map is built using the operations and schemas data.
	implementation: Module configured as the implementation of the renderer (defaults to
OpenAPI.Renderer). Callbacks must use this field when calling other render callbacks.
	operations: List of OpenAPI.Processor.Operation.t/0 structs processed in the previous
phase. These operations may appear in any order due to map key ordering.
	profile: Name of the active configuration profile. Callbacks must use this field when
looking up configuration from the application environment.
	schemas: Map of schema references to their OpenAPI.Processor.Schema.t/0 structs
processed in the previous phase. The reference-keyed map is included to make it easier for
callbacks to look up a schema by its reference, as this is often how operations will refer
to them.

All of this state is managed by the code generator, and it is unlikely that a callback would
need to transform this struct directly.

 Anchor for this section

 Summary

 Types

 t()

 Render phase state

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Renderer.State{
 files: %{required(module()) => OpenAPI.Renderer.File.t()},
 implementation: module(),
 operations: [OpenAPI.Processor.Operation.t()],
 profile: atom(),
 schemas: %{required(reference()) => OpenAPI.Processor.Schema.t()}
}

Render phase state
See module documentation for additional information.

OpenAPI.Renderer.Util

Default implementation and helpers related to formatting and writing files
This module contains the default implementations for:
	OpenAPI.Renderer.format/2
	OpenAPI.Renderer.write/2

It also contains several helpers for working with ASTs, including the addition of formatting
metadata necessary to create consistent code.

 Anchor for this section

 Summary

 Default Implementations

 format(state, file)

 Convert an AST into formatted code as a string

 write(state, file)

 Write a rendered file to the filesystem

 Functions

 clean_list(nodes)

 Flatten and remove nil elements from a list of AST nodes

 format_multiline_docs(ast_node)

 Walks the given AST and replaces @doc and @moduledoc strings with """ blocks if the
contents have newlines

 put_newlines(arg1)

 Enforce the existence of whitespace after an expression

 to_readable_type(state, type)

 Collapse nested unions and replace references with {module, type} identifiers

 to_type(state, type)

 Render an internal type as a typespec

 unwrap_enums(types)

 Replace enum types with the equivalent list of const types

 unwrap_unions(types)

 Flatten nested union types

 Anchor for this section

Default Implementations

 Link to this function

 format(state, file)

 View Source

 @spec format(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: iodata()

Convert an AST into formatted code as a string
Default implementation of OpenAPI.Renderer.format/2.
The AST may include optional formatting metadata (ex. delimiter, indentation, or
end_of_expression). It will be formatted to a line width of 98 to match the default Mix
formatter. In addition, any @moduledoc or @doc statements that contain a newline character
will be modified to use """ as the delimiter.

 Link to this function

 write(state, file)

 View Source

 @spec write(OpenAPI.Renderer.State.t(), OpenAPI.Renderer.File.t()) :: :ok

Write a rendered file to the filesystem
Default implementation of OpenAPI.Renderer.write/2.
This implementation writes the file contents to the location and ensures an additional
newline is included at the end of the file. It also ensures that any subdirectories are created
prior to writing. Any failure will result in a raised error.

 Anchor for this section

Functions

 Link to this function

 clean_list(nodes)

 View Source

 @spec clean_list(Macro.t()) :: Macro.t()

Flatten and remove nil elements from a list of AST nodes
This helper deals with cases in which certain sections of code are rendered conditionally, or
with variable lengths of statements. nil values will be removed, and nested lists of nodes
will be flattened.

 example

 Example

header = if condition, do: quote(do: IO.puts("List"))
statements = for item <- items, do: quote(do: IO.puts(" * #{item}"))

clean_list([header, statements])

 Link to this function

 format_multiline_docs(ast_node)

 View Source

 @spec format_multiline_docs(Macro.t()) :: Macro.t()

Walks the given AST and replaces @doc and @moduledoc strings with """ blocks if the
contents have newlines

 Link to this function

 put_newlines(arg1)

 View Source

 @spec put_newlines(Macro.t()) :: Macro.t()

Enforce the existence of whitespace after an expression
This helper is useful for cases in which single-line expressions should be separated from the
following line by whitespace, but the formatter would not naturally insert that whitespace.
For example:
@my_attribute "Hello"
@spec my_function :: String.t()
def my_function, do: @my_attribute
It may be desirable to insert whitespace following the module attribute @my_attribute. By
calling this function on that node, the following will be output:
@my_attribute "Hello"

@spec my_function :: String.t()
def my_function, do: @my_attribute
If a list of nodes is given, the last node will receive the additional whitespace metadata.

 Link to this function

 to_readable_type(state, type)

 View Source

 @spec to_readable_type(OpenAPI.Renderer.State.t(), OpenAPI.Processor.Type.t()) ::
 term()

Collapse nested unions and replace references with {module, type} identifiers
This function renders most types exactly as they are expressed internally
(ex. {:string, :generic}), however it transforms certain union types to be more human-readable
and it replaces schema references with the equivalent {Module, :type}.

 Link to this function

 to_type(state, type)

 View Source

 @spec to_type(
 OpenAPI.Renderer.State.t(),
 OpenAPI.Processor.Type.t() | {module(), atom()}
) :: Macro.t()

Render an internal type as a typespec
To the best of its ability, this function constructs an accurate typespec for the internal
type given. Note that this is somewhat lossy; for example, many distinct types of strings will
map to the String.t() type.

 Link to this function

 unwrap_enums(types)

 View Source

 @spec unwrap_enums([OpenAPI.Processor.Type.t()]) :: [OpenAPI.Processor.Type.t()]

Replace enum types with the equivalent list of const types
This low-level helper is used by to_type/2 when simplifying union types.

 Link to this function

 unwrap_unions(types)

 View Source

 @spec unwrap_unions([OpenAPI.Processor.Type.t()]) :: [OpenAPI.Processor.Type.t()]

Flatten nested union types
This low-level helper is used by to_readable_type/2 and to_type/2 when simplifying union
types.

OpenAPI.Spec

OpenAPI description as read by the read phase
Modules contained in this namespace represent portions of the OpenAPI spec. While there is some
occasional processing done by the reader (for example, to add additional context to a schema
while it is read), most of this data is an exact replica of what is contained in the API
description.
All spec modules have a function decode/2 which is not intended to be called by client
library authors, but does the work of parsing the JSON or Yaml contents.

 Anchor for this section

 Summary

 Types

 full_path()

 Fully-qualified absolute file and set of path segments

 path_segment()

 Key or index of a Yaml document

 ref()

 Reference to another part of the spec. Reserved for schemas in this library.

 t()

 Open API specification

 Anchor for this section

Types

 Link to this type

 full_path()

 View Source

 @type full_path() :: {String.t(), [path_segment()]}

Fully-qualified absolute file and set of path segments

 Link to this type

 path_segment()

 View Source

 @type path_segment() :: String.t() | integer()

Key or index of a Yaml document

 Link to this type

 ref()

 View Source

 @type ref() :: {:ref, full_path()}

Reference to another part of the spec. Reserved for schemas in this library.

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec{
 components: OpenAPI.Spec.Components.t(),
 external_docs: OpenAPI.Spec.ExternalDocumentation.t() | nil,
 info: OpenAPI.Spec.Info.t(),
 openapi: String.t(),
 paths: %{optional(:string) => OpenAPI.Spec.Path.Item.t()},
 security: [term()],
 servers: [OpenAPI.Spec.Server.t()],
 tags: [term()]
}

Open API specification

OpenAPI.Spec.Components

Raw components map from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Components{
 callbacks: %{optional(String.t()) => [nil]},
 examples: %{optional(String.t()) => [OpenAPI.Spec.Schema.Example.t()]},
 headers: %{optional(String.t()) => [OpenAPI.Spec.Path.Header.t()]},
 links: %{optional(String.t()) => [OpenAPI.Spec.Link.t()]},
 parameters: %{
 optional(String.t()) => [
 OpenAPI.Spec.Path.Parameter.t() | OpenAPI.Spec.ref()
]
 },
 request_bodies: %{optional(String.t()) => [OpenAPI.Spec.RequestBody.t()]},
 responses: %{optional(String.t()) => [OpenAPI.Spec.Response.t()]},
 schemas: %{optional(String.t()) => [OpenAPI.Spec.Schema.t()]},
 security_schemes: %{optional(String.t()) => [nil]}
}

OpenAPI.Spec.ExternalDocumentation

Raw external documentation definition from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.ExternalDocumentation{
 description: String.t() | nil,
 url: String.t()
}

OpenAPI.Spec.Info

Raw information map from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Info{
 contact: OpenAPI.Spec.Info.Contact.t() | nil,
 description: String.t() | nil,
 license: OpenAPI.Spec.Info.License.t() | nil,
 terms_of_service: String.t() | nil,
 title: String.t(),
 version: String.t()
}

OpenAPI.Spec.Info.Contact

Raw contact information from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Info.Contact{
 email: String.t() | nil,
 name: String.t() | nil,
 url: String.t() | nil
}

OpenAPI.Spec.Info.License

Raw license information from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Info.License{name: String.t() | nil, url: String.t() | nil}

OpenAPI.Spec.Link

Raw link from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Link{
 description: String.t() | nil,
 operation_id: String.t() | nil,
 operation_ref: String.t() | nil,
 parameters: %{optional(String.t()) => any()},
 request_body: any(),
 server: OpenAPI.Spec.Server.t() | nil
}

OpenAPI.Spec.Path.Header

Raw path header from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Path.Header{
 allow_empty_value: boolean(),
 allow_reserved: boolean(),
 content: %{optional(String.t()) => OpenAPI.Spec.Schema.Media.t()},
 deprecated: boolean(),
 description: String.t() | nil,
 example: any(),
 examples: %{optional(String.t()) => OpenAPI.Spec.Schema.Example.t()},
 explode: boolean(),
 required: boolean(),
 schema: OpenAPI.Spec.Schema.t() | OpenAPI.Spec.ref() | nil,
 style: String.t()
}

OpenAPI.Spec.Path.Item

Raw operation path from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Functions

 decode_delete(state, arg2)

 decode_get(state, arg2)

 decode_head(state, arg2)

 decode_options(state, arg2)

 decode_parameters(state, arg2)

 decode_patch(state, arg2)

 decode_post(state, arg2)

 decode_put(state, arg2)

 decode_trace(state, arg2)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Path.Item{
 delete: OpenAPI.Spec.Path.Operation.t() | nil,
 description: String.t() | nil,
 get: OpenAPI.Spec.Path.Operation.t() | nil,
 head: OpenAPI.Spec.Path.Operation.t() | nil,
 options: OpenAPI.Spec.Path.Operation.t() | nil,
 parameters: [OpenAPI.Spec.Path.Parameter.t()],
 patch: OpenAPI.Spec.Path.Operation.t() | nil,
 post: OpenAPI.Spec.Path.Operation.t() | nil,
 put: OpenAPI.Spec.Path.Operation.t() | nil,
 servers: [OpenAPI.Spec.Server.t()],
 summary: String.t() | nil,
 trace: OpenAPI.Spec.Path.Operation.t() | nil
}

 Anchor for this section

Functions

 Link to this function

 decode_delete(state, arg2)

 View Source

 @spec decode_delete(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_get(state, arg2)

 View Source

 @spec decode_get(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_head(state, arg2)

 View Source

 @spec decode_head(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_options(state, arg2)

 View Source

 @spec decode_options(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_parameters(state, arg2)

 View Source

 @spec decode_parameters(map(), map()) :: {map(), [OpenAPI.Spec.Path.Parameter.t()]}

 Link to this function

 decode_patch(state, arg2)

 View Source

 @spec decode_patch(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_post(state, arg2)

 View Source

 @spec decode_post(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_put(state, arg2)

 View Source

 @spec decode_put(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

 Link to this function

 decode_trace(state, arg2)

 View Source

 @spec decode_trace(map(), map()) :: {map(), OpenAPI.Spec.Path.Operation.t() | nil}

OpenAPI.Spec.Path.Operation

Raw operation from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Functions

 decode_parameters(state, arg2)

 decode_request_body(state, arg2)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Path.Operation{
 "$oag_base_file": String.t(),
 "$oag_base_file_path": [OpenAPI.Spec.path_segment()],
 "$oag_last_ref_file": String.t() | nil,
 "$oag_last_ref_path": [OpenAPI.Spec.path_segment()],
 "$oag_path": String.t(),
 "$oag_path_method": String.t(),
 "$oag_path_parameters": [OpenAPI.Spec.Path.Parameter.t()],
 callbacks: nil,
 deprecated: boolean(),
 description: String.t() | nil,
 external_docs: OpenAPI.Spec.ExternalDocumentation.t() | nil,
 operation_id: String.t() | nil,
 parameters: [OpenAPI.Spec.Path.Parameter.t()],
 request_body: OpenAPI.Spec.RequestBody.t() | nil,
 responses: %{optional(pos_integer() | :default) => OpenAPI.Spec.Response.t()},
 security: nil,
 servers: [OpenAPI.Spec.Server.t()],
 summary: String.t() | nil,
 tags: [String.t()]
}

 Anchor for this section

Functions

 Link to this function

 decode_parameters(state, arg2)

 View Source

 @spec decode_parameters(map(), map()) :: {map(), [OpenAPI.Spec.Path.Parameter.t()]}

 Link to this function

 decode_request_body(state, arg2)

 View Source

 @spec decode_request_body(map(), map()) :: {map(), OpenAPI.Spec.RequestBody.t() | nil}

OpenAPI.Spec.Path.Parameter

Raw path parameter from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Functions

 decode_content(state, arg2)

 decode_examples(state, arg2)

 decode_schema(state, arg2)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Path.Parameter{
 allow_empty_value: boolean(),
 allow_reserved: boolean(),
 content: %{optional(String.t()) => OpenAPI.Spec.Schema.Media.t()},
 deprecated: boolean(),
 description: String.t() | nil,
 example: any(),
 examples: %{optional(String.t()) => OpenAPI.Spec.Schema.Example.t()},
 explode: boolean(),
 in: String.t(),
 name: String.t(),
 required: boolean(),
 schema: OpenAPI.Spec.Schema.t() | OpenAPI.Spec.ref() | nil,
 style: String.t() | nil
}

 Anchor for this section

Functions

 Link to this function

 decode_content(state, arg2)

 View Source

 @spec decode_content(map(), map()) ::
 {map(), %{optional(String.t()) => OpenAPI.Spec.Schema.Media.t()}}

 Link to this function

 decode_examples(state, arg2)

 View Source

 @spec decode_examples(map(), map()) ::
 {map(), %{optional(String.t()) => OpenAPI.Spec.Schema.Example.t()}}

 Link to this function

 decode_schema(state, arg2)

 View Source

 @spec decode_schema(map(), map()) :: {map(), OpenAPI.Spec.Schema.t() | nil}

OpenAPI.Spec.RequestBody

Raw request body from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.RequestBody{
 content: %{optional(String.t()) => OpenAPI.Spec.Schema.Media.t()},
 description: String.t() | nil,
 required: boolean()
}

OpenAPI.Spec.Response

Raw response from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Response{
 content: %{optional(String.t()) => OpenAPI.Spec.Schema.Media.t()},
 description: String.t(),
 headers: %{optional(String.t()) => OpenAPI.Spec.Path.Header.t()},
 links: %{optional(String.t()) => OpenAPI.Spec.Link.t()}
}

OpenAPI.Spec.Schema

Raw JSON schema specification from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 JSON Schema specification

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Schema{
 "$oag_base_file": String.t(),
 "$oag_base_file_path": [OpenAPI.Spec.path_segment()],
 "$oag_last_ref_file": String.t() | nil,
 "$oag_last_ref_path": [OpenAPI.Spec.path_segment()],
 "$oag_schema_context": [tuple()],
 additional_properties: boolean() | t() | OpenAPI.Spec.ref(),
 all_of: [t() | OpenAPI.Spec.ref()] | nil,
 any_of: [t() | OpenAPI.Spec.ref()] | nil,
 const: any(),
 default: any(),
 deprecated: boolean(),
 description: String.t() | nil,
 discriminator: OpenAPI.Spec.Schema.Discriminator.t(),
 enum: [any()] | nil,
 example: any(),
 exclusive_maximum: boolean(),
 exclusive_minimum: boolean(),
 external_docs: OpenAPI.Spec.ExternalDocumentation.t() | nil,
 format: String.t() | nil,
 items: t() | OpenAPI.Spec.ref() | nil,
 max_items: non_neg_integer() | nil,
 max_length: non_neg_integer() | nil,
 max_properties: non_neg_integer() | nil,
 maximum: integer() | nil,
 min_items: non_neg_integer() | nil,
 min_length: non_neg_integer() | nil,
 min_properties: non_neg_integer() | nil,
 minimum: integer() | nil,
 multiple_of: pos_integer() | nil,
 not: t() | OpenAPI.Spec.ref() | nil,
 nullable: boolean(),
 one_of: [t() | OpenAPI.Spec.ref()] | nil,
 pattern: String.t() | nil,
 properties: %{optional(String.t()) => t() | OpenAPI.Spec.ref()},
 read_only: boolean(),
 required: [String.t()] | nil,
 title: String.t() | nil,
 type: String.t() | nil,
 unique_items: boolean(),
 write_only: boolean(),
 xml: OpenAPI.Spec.Schema.XML.t()
}

JSON Schema specification
In addition to the data derived from the JSON or Yaml specification, this struct also contains
some contextual information including its absolute and referenced location in the spec. All
such fields are prefixed with $oag_.

OpenAPI.Spec.Schema.Discriminator

Raw schema discriminator from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Schema.Discriminator{
 mapping: %{optional(String.t()) => String.t()},
 property_name: String.t()
}

OpenAPI.Spec.Schema.Encoding

Raw schema encoding from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Schema.Encoding{
 allow_reserved: boolean(),
 content_type: String.t() | nil,
 explode: boolean(),
 headers: %{optional(String.t()) => OpenAPI.Spec.Path.Header.t()},
 style: String.t()
}

OpenAPI.Spec.Schema.Example

Raw schema example from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Schema.Example{
 description: String.t() | nil,
 external_value: String.t() | nil,
 summary: String.t() | nil,
 value: any()
}

OpenAPI.Spec.Schema.Media

Raw media schema from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Schema.Media{
 encoding: %{optional(String.t()) => OpenAPI.Spec.Schema.Encoding.t()},
 example: any(),
 examples: %{optional(String.t()) => OpenAPI.Spec.Schema.Example.t()},
 schema: OpenAPI.Spec.Schema.t() | OpenAPI.Spec.ref()
}

OpenAPI.Spec.Schema.XML

Raw XML definition from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Schema.XML{
 attribute: boolean() | nil,
 name: String.t() | nil,
 namespace: String.t() | nil,
 prefix: String.t() | nil,
 wrapped: boolean() | nil
}

OpenAPI.Spec.Server

Raw server from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Server{
 description: String.t() | nil,
 url: String.t(),
 variables: %{optional(String.t()) => OpenAPI.Spec.Server.Variable.t()}
}

OpenAPI.Spec.Server.Variable

Raw server variable from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Server.Variable{
 default: String.t(),
 description: String.t() | nil,
 enum: [String.t(), ...] | nil
}

OpenAPI.Spec.Tag

Raw tag from the OpenAPI spec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OpenAPI.Spec.Tag{
 description: String.t() | nil,
 external_docs: OpenAPI.Spec.ExternalDocumentation.t() | nil,
 name: String.t()
}

mix api.gen

Generate code from an Open API description
This task requires two arguments:
	The configuration profile to use, and
	The location of the OpenAPI description.

The description location can be given as an absolute path or a path relative to the Mix project
where this task is run.
Example
mix api.gen default ../rest-api-description/spec.yaml

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

